InferTrans: Hierarchical structural fusion transformer for crowded human pose estimation

被引:0
|
作者
Li, Muyu [1 ,2 ]
Wang, Yingfeng [4 ]
Hu, Henan [3 ]
Zhao, Xudong [1 ,2 ]
机构
[1] Dalian Univ Technol, Inst Intelligent Sci & Technol, Sch Control Sci & Engn, Dalian 116024, Liaoning, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Liaoning, Peoples R China
[3] Dalian Jiaotong Univ, Sch Mech Engn, Dalian 116028, Liaoning, Peoples R China
[4] Ctr Intelligent Multidimens Data Anal, Hong Kong Sci Pk, Hong Kong, Peoples R China
关键词
Human pose estimation; Occlusion handling; Transformer;
D O I
10.1016/j.inffus.2024.102878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human pose estimation in crowded scenes presents unique challenges due to frequent occlusions and complex interactions between individuals. To address these issues, we introduce InferTrans, a hierarchical structural fusion Transformer designed to improve crowded human pose estimation. InferTrans integrates semantic features into structural information using a hierarchical joint-limb-semantic fusion module. By reorganizing joints and limbs into a tree structure, the fusion module facilitates effective information exchange across different structural levels, and leverage both global structural information and local contextual details. Furthermore, we explicitly model limb structural patterns separately from joints, treating limbs as vectors with defined lengths and orientations. This allows our model to infer complete human poses from minimal input, significantly enhancing pose refinement tasks. Extensive experiments on multiple datasets demonstrate that InferTrans outperforms existing pose estimation techniques in crowded and occluded scenarios. The proposed InferTrans serves as a robust post-processing technique, and is capable of improving the accuracy and robustness of pose estimation in challenging environments.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ITERATIVE SUBNETWORK WITH LINEAR HIERARCHICAL ORDERING FOR HUMAN POSE ESTIMATION
    Chu, Shek Wai
    Zhang, Chaoyi
    Song, Yang
    Cai, Weidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 514 - 518
  • [22] Spatiotemporal Learning Transformer for Video-Based Human Pose Estimation
    Gai, Di
    Feng, Runyang
    Min, Weidong
    Yang, Xiaosong
    Su, Pengxiang
    Wang, Qi
    Han, Qing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4564 - 4576
  • [23] MSRT: multi-scale representation transformer for regression-based human pose estimation
    Beiguang Shan
    Qingxuan Shi
    Fang Yang
    Pattern Analysis and Applications, 2023, 26 : 591 - 603
  • [24] SCGFormer: Semantic Chebyshev Graph Convolution Transformer for 3D Human Pose Estimation
    Liang, Jiayao
    Yin, Mengxiao
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [25] MSRT: multi-scale representation transformer for regression-based human pose estimation
    Shan, Beiguang
    Shi, Qingxuan
    Yang, Fang
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 591 - 603
  • [26] PPT: Token-Pruned Pose Transformer for Monocular and Multi-view Human Pose Estimation
    Ma, Haoyu
    Wang, Zhe
    Chen, Yifei
    Kong, Deying
    Chen, Liangjian
    Liu, Xingwei
    Yan, Xiangyi
    Tang, Hao
    Xie, Xiaohui
    COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 424 - 442
  • [27] DGFormer: Dynamic graph transformer for 3D human pose estimation
    Chen, Zhangmeng
    Dai, Ju
    Bai, Junxuan
    Pan, Junjun
    PATTERN RECOGNITION, 2024, 152
  • [28] A Lightweight Context-Aware Feature Transformer Network for Human Pose Estimation
    Ma, Yanli
    Shi, Qingxuan
    Zhang, Fan
    ELECTRONICS, 2024, 13 (04)
  • [29] Dual-Path Transformer for 3D Human Pose Estimation
    Zhou, Lu
    Chen, Yingying
    Wang, Jinqiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3260 - 3270
  • [30] Revisiting Monocular Satellite Pose Estimation With Transformer
    Wang, Zi
    Zhang, Zhuo
    Sun, Xiaoliang
    Li, Zhang
    Yu, Qifeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 4279 - 4294