InferTrans: Hierarchical structural fusion transformer for crowded human pose estimation

被引:0
|
作者
Li, Muyu [1 ,2 ]
Wang, Yingfeng [4 ]
Hu, Henan [3 ]
Zhao, Xudong [1 ,2 ]
机构
[1] Dalian Univ Technol, Inst Intelligent Sci & Technol, Sch Control Sci & Engn, Dalian 116024, Liaoning, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Liaoning, Peoples R China
[3] Dalian Jiaotong Univ, Sch Mech Engn, Dalian 116028, Liaoning, Peoples R China
[4] Ctr Intelligent Multidimens Data Anal, Hong Kong Sci Pk, Hong Kong, Peoples R China
关键词
Human pose estimation; Occlusion handling; Transformer;
D O I
10.1016/j.inffus.2024.102878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human pose estimation in crowded scenes presents unique challenges due to frequent occlusions and complex interactions between individuals. To address these issues, we introduce InferTrans, a hierarchical structural fusion Transformer designed to improve crowded human pose estimation. InferTrans integrates semantic features into structural information using a hierarchical joint-limb-semantic fusion module. By reorganizing joints and limbs into a tree structure, the fusion module facilitates effective information exchange across different structural levels, and leverage both global structural information and local contextual details. Furthermore, we explicitly model limb structural patterns separately from joints, treating limbs as vectors with defined lengths and orientations. This allows our model to infer complete human poses from minimal input, significantly enhancing pose refinement tasks. Extensive experiments on multiple datasets demonstrate that InferTrans outperforms existing pose estimation techniques in crowded and occluded scenarios. The proposed InferTrans serves as a robust post-processing technique, and is capable of improving the accuracy and robustness of pose estimation in challenging environments.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Efficient Hierarchical Multi-view Fusion Transformer for 3D Human Pose Estimation
    Zhou, Kangkang
    Zhang, Lijun
    Lu, Feng
    Zhou, Xiang-Dong
    Shi, Yu
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7512 - 7520
  • [2] MsF-HigherHRNet: Multi-scale Feature Fusion for Human Pose Estimation in Crowded Scenes
    Yu, Cuihong
    Han, Cheng
    Zhang, Qi
    Zhang, Chao
    COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, CAD/GRAPHICS 2023, 2024, 14250 : 16 - 29
  • [3] A Fast and Effective Transformer for Human Pose Estimation
    Wang, Dong
    Xie, Wenjun
    Cai, Youcheng
    Liu, Xiaoping
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 992 - 996
  • [4] Efficient Human Pose Estimation in Hierarchical Context
    Zhang, Feng
    Zhu, Xiatian
    Ye, Mao
    IEEE ACCESS, 2019, 7 : 29365 - 29373
  • [5] Hierarchical Adversarial Network for Human Pose Estimation
    Radwan, Ibrahim
    Moustafa, Nour
    Keating, Byron
    Choo, Kim-Kmang Raymond
    Goecke, Roland
    IEEE ACCESS, 2019, 7 : 103619 - 103628
  • [6] Hierarchical pose estimation for human gait analysis
    Spehr, Jens
    Winkelbach, Simon
    Wahl, Friedrich M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 106 (02) : 104 - 113
  • [7] DPIT: Dual-Pipeline Integrated Transformer for Human Pose Estimation
    Zhao, Shuaitao
    Liu, Kun
    Huang, Yuhang
    Bao, Qian
    Zeng, Dan
    Liu, Wu
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 559 - 576
  • [8] Enhancing feature fusion for human pose estimation
    Rui Wang
    Jiangwei Tong
    Xiangyang Wang
    Machine Vision and Applications, 2020, 31
  • [9] Enhancing feature fusion for human pose estimation
    Wang, Rui
    Tong, Jiangwei
    Wang, Xiangyang
    MACHINE VISION AND APPLICATIONS, 2020, 31 (7-8)
  • [10] Hierarchical Graph Neural Network for Human Pose Estimation
    Zheng, Guanghua
    Zhao, Zhongqiu
    Zhang, Zhao
    Yang, Yi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2663 - 2668