Unsupervised aspect-based summarization using variational autoencoders

被引:0
作者
Shan, Huawei [1 ]
Lu, Dongyuan [2 ]
Zhang, Li [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-level summarization; Cognitive map; Variational autoencoders; Graph convolutional network; Public opinion;
D O I
10.1016/j.eswa.2024.126059
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Digital platforms have become the primary medium for the public to access content and express feedback. Aspect-level summarization targeting content themes aims to delve deep into the multidimensional structure of the content and understand the intrinsic relationship between the content and public feedback. Existing aspect-level summarization methods predominantly match and summarize based on aspects extracted from the feedback. Such approaches might focus on points that are unrelated to the content itself, failing to genuinely reflect the profound structure of the content theme. To address this, this paper introduces a Content-Topic Aligned Aspect-Level Comment Summarization Model (CTACSum) based on Variational Autoencoders (VAEs). Initially, the model extracts thematic graphs representing different content themes from a content keyword co-occurrence graph constructed based on cognitive map theory. To effectively match content themes and feedback, the model employs VAEs to learn latent variable representations capturing key semantic information from the feedback. It then predicts the relationship between content themes and feedback based on the latent variable representation of the feedback and the features of the content theme graph encoded by Graph Convolutional Networks (GCNs). Ultimately, the model feeds representative feedback of a specific content theme into the VAE to generate a summary encapsulating salient semantic information. To validate the efficacy of the proposed model, we constructed and released a benchmark dataset, RNC, using news-feedback as the corpus. The results demonstrate that the CTACSum model outperforms baseline models in terms of relevance and consistency.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Aggregated graph convolutional networks for aspect-based sentiment classification
    Zhao, Meng
    Yang, Jing
    Zhang, Jianpei
    Wang, Shenglong
    INFORMATION SCIENCES, 2022, 600 : 73 - 93
  • [22] Detecting One-Pixel Attacks Using Variational Autoencoders
    Alatalo, Janne
    Sipola, Tuomo
    Kokkonen, Tero
    INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 : 611 - 623
  • [23] A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders
    Akkari, Nissrine
    Casenave, Fabien
    Hachem, Elie
    Ryckelynck, David
    FLUIDS, 2022, 7 (10)
  • [24] Ship Detection in SAR Images Using Convolutional Variational Autoencoders
    Ferreira, Nuno
    Silveira, Margarida
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2503 - 2506
  • [25] Semi-Supervised Channel Equalization Using Variational Autoencoders
    Burshtein, David
    Bery, Eli
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19681 - 19695
  • [26] Generation of whole building renovation scenarios using variational autoencoders
    Sharif, Seyed Amirhosain
    Hammad, Amin
    Eshraghi, Pegah
    ENERGY AND BUILDINGS, 2021, 230
  • [27] Deep learning for photovoltaic defect detection using variational autoencoders
    Westraadt, Edward J.
    Brettenny, Warren J.
    Clohessy, Chantelle M.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2023, 119 (1-2)
  • [28] Disentangling Generative Factors of Physical Fields Using Variational Autoencoders
    Jacobsen, Christian
    Duraisamy, Karthik
    FRONTIERS IN PHYSICS, 2022, 10
  • [29] Optimizing Few-Shot Learning Based on Variational Autoencoders
    Wei, Ruoqi
    Mahmood, Ausif
    ENTROPY, 2021, 23 (11)
  • [30] An optimized method for variational autoencoders based on Gaussian cloud model
    Dai, Jin
    Guo, Qiuyan
    Wang, Guoyin
    Liu, Xiao
    Zheng, Zhifang
    INFORMATION SCIENCES, 2023, 645