The study of 3D FDTD modelling of large-scale Bragg gratings validated by experimental measurements

被引:1
作者
Rahimof, Yasmin [1 ]
Nechepurenko, Igor A. [1 ]
Mahani, M. R. [1 ]
Tsarapkin, Aleksei [1 ]
Wicht, Andreas [1 ]
机构
[1] Ferdinand Braun Inst FBH, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
来源
JOURNAL OF PHYSICS-PHOTONICS | 2024年 / 6卷 / 04期
关键词
Bragg gratings; mECDL; optical simulations; FDTD simulations; NUMERICAL-ANALYSIS; LASER; SIMULATION; DISPERSION; SENSOR;
D O I
10.1088/2515-7647/ad8824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study discusses the importance of accurately calculating the optical response of Bragg gratings and the challenges associated with the 3D finite-difference time-domain (FDTD) method for simulating large-scale structures. The Bragg grating section in monolithic extended cavity diode lasers is of substantial size, making 3D FDTD simulations computationally challenging due to their complexity. In order to assess the accuracy of 3D simulations, we compare them with experimental results. Using a precise model design, involving a systematic analysis of simulation parameters, we obtain a good agreement between 3D FDTD simulations and the experimental results.
引用
收藏
页数:10
相关论文
共 61 条
[1]  
Bawamia A I., 2012, Improvement of the Beam Quality of High-Power Broad Area Semiconductor Diode Lasers by Means of an External Resonator, Vvol 20
[2]   FDTD simulations of localization and enhancements on fractal plasmonics nanostructures [J].
Buil, Stephanie ;
Laverdant, Julien ;
Berini, Bruno ;
Maso, Pierre ;
Hermier, Jean-Pierre ;
Quelin, Xavier .
OPTICS EXPRESS, 2012, 20 (11) :11968-11975
[3]  
Butov O V., 2022, Nauk, V192, P1385, DOI [10.3367/UFNe.2021.09.039070, DOI 10.3367/UFNE.2021.09.039070]
[4]   Narrow linewidth DBR laser based on high order Bragg grating defined by i-line lithography [J].
Chen, Hong ;
Jia, Peng ;
Chen, Chao ;
Qin, Li ;
Chen, Yongyi ;
Huang, Youwen ;
Ning, Yongqiang ;
Wang, Lijun .
OPTICS COMMUNICATIONS, 2019, 445 :296-300
[5]   Bragg waveguide grating as a 1d photonic band gap structure: COST 268 modelling task [J].
J. Čtyroký ;
S. Helfert ;
R. Pregla ;
P. Bienstman ;
R. Baets ;
R. De Ridder ;
R. Stoffer ;
G. Klaasse ;
J. PetráČek ;
P. Lalanne ;
J. P. Hugonin ;
R. M. De LaRue .
Optical and Quantum Electronics, 2002, 34 (5-6) :455-470
[6]   Simulations of waveguide Bragg grating filters based on subwavelength grating waveguide [J].
Ctyroky, Jiri ;
Kwiecien, Pavel ;
Wang, Junjia ;
Richter, Ivan ;
Glesk, Ivan ;
Chen, Lawrence .
INTEGRATED OPTICS: PHYSICS AND SIMULATIONS II, 2015, 9516
[7]   Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies [J].
Esposito, Marco ;
Tasco, Vittorianna ;
Cuscuna, Massimo ;
Todisco, Francesco ;
Benedetti, Alessio ;
Tarantini, Iolena ;
De Giorgi, Milena ;
Sanvitto, Daniele ;
Passaseo, Adriana .
ACS PHOTONICS, 2015, 2 (01) :105-114
[8]   Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range [J].
Farmani, Ali .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (02) :401-407
[9]  
Fouladi MF., 2019, J AI DATA MINING, V7, P279
[10]   Surface Bragg Gratings for High Brightness Lasers [J].
Fricke, J. ;
Wenzel, H. ;
Brox, O. ;
Crump, P. ;
Sumpf, B. ;
Paschke, K. ;
Matalla, M. ;
Erbert, G. ;
Knigge, A. ;
Traenkle, G. .
NOVEL IN-PLANE SEMICONDUCTOR LASERS XIX, 2020, 11301