Propagation dynamics of multipole solitons and influence of fractional diffraction effect on solitons in II-type Dirac photonic lattices

被引:0
作者
Mou, Da-Sheng [1 ]
Zhang, Jia-Hao [1 ]
Jia, Yun-Hao [1 ]
Dai, Chao-Qing [1 ]
机构
[1] Zhejiang A&F Univ, Coll Opt Mech & Elect Engn, Linan 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
II-type Dirac photonic lattices; Fractional diffraction effect; Topological gap solitons; Propagation dynamics; LIGHT;
D O I
10.1016/j.chaos.2024.115895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By changing the depth of the waveguide and adjusting the band structure to make the bandgap appear, the influence of the integer- and fractional-order diffractions on two-dimensional spatial localized modes in the IItype Dirac photonic lattices are investigated. Under the nonlinear action, the linear topological mode is transformed into a set of topological gap solitons, which form stable integer-order fundamental and dipole solions, and unstable quadrupole solion. Stable fractional-order fundamental and dipole solions and metastable quadrupole solion are obtained by decreasing the Levy index, and the propagation dynamics of these solitons are discussed. By comparing the integer-order with the fractional-order solitons, it is proved that the propagation constant as well as the Levy index play a crucial role in the stability of soliton. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Fractional Integrable Nonlinear Soliton Equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICAL REVIEW LETTERS, 2022, 128 (18)
[2]   ON RIESZ DERIVATIVE [J].
Cai, Min ;
Li, Changpin .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :287-301
[3]   Double-hump solitons in fractional dimensions with a PT-symmetric potential [J].
Dong, Liangwei ;
Huang, Changming .
OPTICS EXPRESS, 2018, 26 (08) :10509-10518
[4]   Corner states of light in photonic waveguides [J].
El Hassan, Ashraf ;
Kunst, Flore K. ;
Moritz, Alexander ;
Andler, Guillermo ;
Bergholtz, Emil J. ;
Bourennane, Mohamed .
NATURE PHOTONICS, 2019, 13 (10) :697-+
[5]   Vector rogue waves in spin-1 Bose-Einstein condensates with spin-orbit coupling [J].
He, Jun-Tao ;
Li, Hui-Jun ;
Lin, Ji ;
Malomed, Boris A. .
NEW JOURNAL OF PHYSICS, 2024, 26 (09)
[6]   Gap solitons in the nonlinear fractional Schrodinger equation with an optical lattice [J].
Huang, Changming ;
Dong, Liangwei .
OPTICS LETTERS, 2016, 41 (24) :5636-5639
[7]   Parametric Type-II Dirac Photonic Lattices [J].
Jin, Kaichao ;
Zhong, Hua ;
Li, Yongdong ;
Ye, Fangwei ;
Zhang, Yanpeng ;
Li, Fuli ;
Liu, Chunliang ;
Zhang, Yiqi .
ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (07)
[8]   Modulational instability and solitary waves in polariton topological insulators [J].
Kartashov, Yaroslav V. ;
Skryabin, Dmitry V. .
OPTICA, 2016, 3 (11) :1228-1236
[9]   Solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :247-305
[10]   Conical intersections for light and matter waves [J].
Leykam, Daniel ;
Desyatnikov, Anton S. .
ADVANCES IN PHYSICS-X, 2016, 1 (01) :101-113