3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding

被引:2
作者
Tran, Thang Q. [1 ,2 ]
Deshpande, Sayyam [1 ]
Dasari, Smita Shivraj [1 ]
Arole, Kailash [3 ]
Johnson, Denis [1 ]
Zhang, Yufan [1 ]
Harkin, Ethan M. [1 ]
Djire, Abdoulaye [1 ,3 ]
Seet, Hang Li [2 ]
Nai, Sharon Mui Ling [2 ]
Green, Micah J. [1 ,3 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[2] ASTAR, Singapore Inst Mfg Technol SIMTech, Singapore 636732, Singapore
[3] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
phenolic resin; carbon nanotube; direct inkwriting; electromagnetic interference shielding; heat dissipation; NANOCOMPOSITES;
D O I
10.1021/acsami.4c17115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites. Different CNT loadings, curing conditions, substrate types, and sample sizes were explored to minimize the negative effects of the byproducts released from the cross-linking reactions of phenolic on the printed shape integrity. At a CNT loading of 10 wt %, a slow curing cycle enables us to cure printed thin-walled CNT/phenolic composites with highly dense structures; such structures are impossible without a filler. Moreover, the electrical conductivity of the printed 10 wt % CNT/phenolic composites increased by orders of magnitude due to CNT percolation, while an improvement of 92% in thermal conductivity was achieved over the neat phenolic. EMI shielding effectiveness of the printed CNT/phenolic composites reaches 41.6 dB at the same CNT loading, offering a shielding efficiency of 99.99%. The results indicate that high CNT loading, a slow curing cycle, flexible substrates, and one thin sample dimension are the key factors to produce high-performance 3D-printed CNT/phenolic composites to address the overheating and EMI issues of modern electronic devices.
引用
收藏
页码:69929 / 69939
页数:11
相关论文
共 42 条
[31]   Additive manufacturing of anisotropic graphene-based composites for thermal management applications [J].
Schleifer, Shani Ligati ;
Regev, Oren .
ADDITIVE MANUFACTURING, 2023, 70
[32]   Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking [J].
Tran, Hien A. ;
Hoang, Trung Thien ;
Maraldo, Anton ;
Do, Thanh Nho ;
Kaplan, David L. ;
Lim, Khoon S. ;
Rnjak-Kovacina, Jelena .
MATERIALS TODAY, 2023, 65 :244-259
[33]   Enhanced transverse strength of 3D printed acrylonitrile butadiene styrene parts by carbon fiber/epoxy pin insertion [J].
Tran, Thang Q. ;
Sarmah, Anubhav ;
Dasari, Smita Shivraj ;
Arole, Kailash ;
Cupich, Matthew J. ;
Amiouny, Lara A. ;
Li Seet, Hang ;
Nai, Sharon Mui Ling ;
Green, Micah J. .
ADDITIVE MANUFACTURING, 2024, 79
[34]   Radio frequency-assisted curing of on-chip printed CNT/silicone heatsinks produced by material extrusion 3D printing [J].
Tran, Thang Q. ;
Sarmah, Anubhav ;
Harkin, Ethan M. ;
Dasari, Smita Shivraj ;
Arole, Kailash ;
Cupich, Matthew J. ;
Wright, Aniela J. K. ;
Li Seet, Hang ;
Nai, Sharon Mui Ling ;
Green, Micah J. .
ADDITIVE MANUFACTURING, 2023, 78
[35]   Highly-dense acrylonitrile butadiene styrene specimens fabricated by overheat material extrusion 3D printing [J].
Tran, Thang Q. ;
Deng, Xinying ;
Canturri, Carla ;
Tham, Chu Long ;
Ng, Feng Lin .
RAPID PROTOTYPING JOURNAL, 2023, 29 (04) :687-696
[36]   Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy [J].
Tuan-Khoa Nguyen ;
Yadav, Sharda ;
Thanh-An Truong ;
Han, Mengdi ;
Barton, Matthew ;
Leitch, Michael ;
Guzman, Pablo ;
Dinh, Toan ;
Ashok, Aditya ;
Vu, Hieu ;
Dau, Van ;
Haasmann, Daniel ;
Chen, Lin ;
Park, Yoonseok ;
Thanh Nho Do ;
Yamauchi, Yusuke ;
Rogers, John A. ;
Nam-Trung Nguyen ;
Hoang-Phuong Phan .
ACS NANO, 2022, 16 (07) :10890-10903
[37]   Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes [J].
V. Novikov, Ilya ;
V. Krasnikov, Dmitry ;
Vorobei, Anton M. ;
Zuev, Yaroslav I. ;
Butt, Hassaan A. ;
Fedorov, Fedor S. ;
Gusev, Sergey A. ;
Safonov, Alexander A. ;
V. Shulga, Eugene ;
Konev, Stepan D. ;
V. Sergeichev, Ivan ;
Zhukov, Sergey S. ;
Kallio, Tanja ;
Gorshunov, Boris P. ;
Parenago, Olga O. ;
Nasibulin, Albert G. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (16) :18866-18876
[38]   Three-Dimensional-Printed Carbon Nanotube/Polylactic Acid Composite for Efficient Electromagnetic Interference Shielding [J].
Xu, Zhenzhen ;
Dou, Tiantian ;
Wang, Yazhou ;
Zuo, Hongmei ;
Chen, Xinyu ;
Zhang, Mingchun ;
Zou, Lihua .
POLYMERS, 2023, 15 (14)
[39]   Effect of cure temperature on the thermal degradation, mechanical, microstructural and moisture absorption behavior of vacuum-only, carbon-fiber reinforced phenolic composites [J].
Zaldivar, Rafael J. ;
Ferrelli, Geena L. ;
Arredondo, Vanessa ;
Kim, Hyun, I .
JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (34)
[40]   Recent Advances in Design and Preparation of Polymer-Based Thermal Management Material [J].
Zhang, Hongli ;
Shi, Tiezhu ;
Ma, Aijie .
POLYMERS, 2021, 13 (16)