3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding

被引:0
|
作者
Tran, Thang Q. [1 ,2 ]
Deshpande, Sayyam [1 ]
Dasari, Smita Shivraj [1 ]
Arole, Kailash [3 ]
Johnson, Denis [1 ]
Zhang, Yufan [1 ]
Harkin, Ethan M. [1 ]
Djire, Abdoulaye [1 ,3 ]
Seet, Hang Li [2 ]
Nai, Sharon Mui Ling [2 ]
Green, Micah J. [1 ,3 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[2] ASTAR, Singapore Inst Mfg Technol SIMTech, Singapore 636732, Singapore
[3] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
phenolic resin; carbon nanotube; direct inkwriting; electromagnetic interference shielding; heat dissipation; NANOCOMPOSITES;
D O I
10.1021/acsami.4c17115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites. Different CNT loadings, curing conditions, substrate types, and sample sizes were explored to minimize the negative effects of the byproducts released from the cross-linking reactions of phenolic on the printed shape integrity. At a CNT loading of 10 wt %, a slow curing cycle enables us to cure printed thin-walled CNT/phenolic composites with highly dense structures; such structures are impossible without a filler. Moreover, the electrical conductivity of the printed 10 wt % CNT/phenolic composites increased by orders of magnitude due to CNT percolation, while an improvement of 92% in thermal conductivity was achieved over the neat phenolic. EMI shielding effectiveness of the printed CNT/phenolic composites reaches 41.6 dB at the same CNT loading, offering a shielding efficiency of 99.99%. The results indicate that high CNT loading, a slow curing cycle, flexible substrates, and one thin sample dimension are the key factors to produce high-performance 3D-printed CNT/phenolic composites to address the overheating and EMI issues of modern electronic devices.
引用
收藏
页码:69929 / 69939
页数:11
相关论文
共 50 条
  • [1] Investigation of electrical, electromagnetic interference shielding and tensile properties of 3D-printed acrylonitrile butadiene styrene/carbon nanotube composites
    Maleki, Amir Hossein
    Zolfaghari, Abbas
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2024, 37 (07) : 2409 - 2424
  • [2] Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding
    Yildirim, Ferhat
    Kabakci, Elif
    Sas, Hatice S.
    Eskizeybek, Volkan
    POLYMER COMPOSITES, 2022, 43 (08) : 5690 - 5703
  • [3] 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interference shielding
    Wang Y.
    Fan Z.
    Zhao J.
    Jia L.
    Xu L.
    Yan D.
    Wang S.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (01): : 1 - 6
  • [4] Electromagnetic interference shielding of 3D-printed graphene-polyamide-6 composites with 3D-printed morphology
    Lee, Kok Peng Marcian
    Baum, Thomas
    Shanks, Robert
    Daver, Fugen
    ADDITIVE MANUFACTURING, 2021, 43
  • [5] Electromagnetic shielding effectiveness of 3D printed polymer composites
    Viskadourakis, Z.
    Vasilopoulos, K. C.
    Economou, E. N.
    Soukoulis, C. M.
    Kenanakis, G.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (12):
  • [6] Carbon nanotube composite for electromagnetic interference shielding and thermal signature reduction
    Kim, J. H.
    Fernandes, G. E.
    Deisley, D.
    Jung, S. W.
    Jokubaitis, M.
    Kim, H. M.
    Kim, K. B.
    Xu, J. M.
    JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (01) : 119 - 124
  • [7] Electromagnetic interference shielding properties of carbon nanotube buckypaper composites
    Park, Jin Gyu
    Louis, Jeffrey
    Cheng, Qunfeng
    Bao, Jianwen
    Smithyman, Jesse
    Liang, Richard
    Wang, Ben
    Zhang, Chuck
    Brooks, James S.
    Kramer, Leslie
    Fanchasis, Percy
    Dorough, David
    NANOTECHNOLOGY, 2009, 20 (41)
  • [8] Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management
    Shin, Beomsu
    Mondal, Subhadip
    Lee, Minkyu
    Kim, Suhyun
    Huh, Yang-Il
    Nah, Changwoon
    CHEMICAL ENGINEERING JOURNAL, 2021, 418
  • [9] Electrical, rheological and electromagnetic interference shielding properties of thermoplastic polyurethane/carbon nanotube composites
    Ramoa, Silvia D. A. S.
    Barra, Guilherme M. O.
    Oliveira, Ricardo V. B.
    de Oliveira, Marcia G.
    Cossa, Mateus
    Soares, Bluma G.
    POLYMER INTERNATIONAL, 2013, 62 (10) : 1477 - 1484
  • [10] Dual 3D networks of graphene derivatives based polydimethylsiloxane composites for electrical insulating electronic packaging materials with outstanding electromagnetic interference shielding and thermal dissipation performances
    Anand, Sebastian
    Vu, Minh Canh
    Mani, Dineshkumar
    Kim, Jun-Beom
    Jeong, Tae-Hyeong
    Islam, Md. Akhtarul
    Kim, Sung-Ryong
    CHEMICAL ENGINEERING JOURNAL, 2023, 462