Exploring the key factors enhancing the microbial fuel cell performance

被引:1
|
作者
Rathinavel, Nithya [1 ]
Samuel, James Obeth Ebenezer [1 ]
Veleeswaran, Ananthi [1 ,2 ]
Nallathambi, Sengottuvelan [3 ]
Ponnuchamy, Kumar [4 ]
Muthusamy, Govarthanan [5 ,6 ]
Raja, Rathinam [7 ]
Ramalingam, Karthik Raja [8 ]
Alagarsamy, Arun [1 ]
机构
[1] Alagappa Univ, Dept Microbiol, Karaikkudi 630003, Tamil Nadu, India
[2] Amer Coll, Dept Food Sci & Nutr, Madurai, Tamil Nadu, India
[3] Alagappa Univ, Dept Ind Chem, Karaikkudi 630003, Tamil Nadu, India
[4] Alagappa Univ, Dept Anim Hlth & Management, Karaikkudi 630003, Tamil Nadu, India
[5] Kyungpook Natl Univ, Dept Environm Engn, Daegu 41566, South Korea
[6] Saveetha Dent Coll & Hosp, Saveetha Inst Med & Tech Sci, Dept Biomat, Chennai 600077, India
[7] Sree Balaji Med Coll & Hosp, Ctr Integrated Med Res, Chennai 600044, India
[8] Saveetha Inst Med & Tech Sci SIMATS, Ctr Appl Res, Saveetha Sch Engn, Chennai 602105, Tamil Nadu, India
关键词
Exoelectrogens; Rhizodeposition; Electrochemistry; Energy production; Fuel cells; MFC; OXYGEN REDUCTION CATALYST; ELECTRODE-SURFACE-AREA; CARBON CAPTURE CELLS; WASTE-WATER; ELECTRICITY-GENERATION; EXCHANGE MEMBRANES; POWER-GENERATION; ANODE; CATHODE; IMPROVE;
D O I
10.1016/j.psep.2024.10.090
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial Fuel Cells are an emerging technology widely used for metabolizing organic matter by microorganisms to produce electricity. The exponential technology of MFC encompasses the potential achievements of power generation in addition to wastewater treatment, desalination and biosensor, etc. However, the prime bottlenecks of the process that affect application include unstable power supply and low production of power production. Hence to acquire efficient performance, the desirable properties like membrane in the cell membrane, microbes involved, and their respective metabolism influencing MFCs have been considered and discussed in the present review. Meanwhile, it is also essential to eliminate certain remarkable defies, including automation, cost, and performance encountered by the conventional MFC technology. Thus, pertinent integrated approaches enabling microscale MFCs, Ceramic or clay-designed MFCs, and CW- MFCs (Constructed wetland- Microbial Fuel Cells) employing rhizodeposition are highly promising in advancing MFC applications. Along with wastewater treatment, the MFCs utilize organic substrates as proficient medium for the growth of exoelectrogenic bacteria in wastewater. Thus, recent overview of MFCs developments for higher and inexpensive energy production encloses the utmost understanding of the factors mentioned above. The present review focuses on the development of different methodologies to enhance the important factors and applications of MFC technology. In addition, it also explains the cohesive, environmentally friendly prospects of MFCs with bioremediation, rhizodeposition influential treatments and desalination.
引用
收藏
页码:385 / 402
页数:18
相关论文
共 50 条
  • [31] Assessing the impact of design factors on the performance of two miniature microbial fuel cells
    Mateo, Sara
    Mascia, Michele
    Jesus Fernandez-Morales, Francisco
    Andres Rodrigo, Manuel
    Di Lorenzo, Mirella
    ELECTROCHIMICA ACTA, 2019, 297 : 297 - 306
  • [32] Progress in enhancing the remediation performance of microbial fuel cells for contaminated groundwater
    Liang, Yuan
    Yu, Dong
    Ma, Hui
    Zhang, Tao
    Chen, Yi
    Akbar, Naueed
    Pu, Shengyan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 145 : 28 - 49
  • [33] In Situ Fuel Processing in a Microbial Fuel Cell
    Bahartan, Karnit
    Amir, Liron
    Israel, Alvaro
    Lichtenstein, Rachel G.
    Alfonta, Lital
    CHEMSUSCHEM, 2012, 5 (09) : 1820 - 1825
  • [34] Enriched microbial fuel cells; Enhancing anode fillers to purify eutrophic water
    Tesfahunegn, Awet Arefe
    Song, Xinshan
    Wang, Yuhui
    Si, Zhihao
    Abraha, Kahsay Gebresilassie
    Mihretu, Libargachew Demlie
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2023, 194
  • [35] Effects of multiple key factors on the performance of petroleum coke-based constructed wetland-microbial fuel cell
    Niu, Yulong
    Qu, Mingxiang
    Du, Jingjing
    Wang, Xilin
    Yuan, Shuaikang
    Zhang, Lingyan
    Zhao, Jianguo
    Jin, Baodan
    Wu, Haiming
    Wu, Shubiao
    Cao, Xia
    Pang, Long
    CHEMOSPHERE, 2023, 315
  • [36] Performance evaluation of a microbial fuel cell for resource recovery as struvite and bioelectricity generation from slaughterhouse wastewater
    Chandrasekharan, Sreelakshmi
    Sathiasivan, Kiruthika
    Ramaswamy, Jeyalakshmi
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2024, 99 (07) : 1660 - 1670
  • [37] Standardized Characterization of a Flow Through Microbial Fuel Cell
    Higgins, Scott R.
    Lau, Carolin
    Atanassov, Plamen
    Minteer, Shelley D.
    Cooney, Michael J.
    ELECTROANALYSIS, 2011, 23 (09) : 2174 - 2181
  • [38] Microbial fuel cell coupled ecological floating bed for enhancing bioelectricity generation and nitrogen removal
    Yang, Xiao-Li
    Li, Tao
    Xia, Yang-Guang
    Singh, Rajendra Prasad
    Song, Hai-Liang
    Zhang, Heng
    Wang, Ya-Wen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (20) : 11433 - 11444
  • [39] Electricity production by an overflow-type wetted-wall microbial fuel cell
    Li, Zhongjian
    Zhang, Xingwang
    Zeng, Yuxuan
    Lei, Lecheng
    BIORESOURCE TECHNOLOGY, 2009, 100 (09) : 2551 - 2555
  • [40] Evaluation and enhanced operational performance of microbial fuel cells under alternating anodic open circuit and closed circuit modes with different substrates
    Sevda, Surajbhan
    Dominguez-Benetton, Xochitl
    De Wever, Heleen
    Vanbroekhoven, Karolien
    Sreekrishnan, T. R.
    Pant, Deepak
    BIOCHEMICAL ENGINEERING JOURNAL, 2014, 90 : 294 - 300