Soft fault detection in cables using the cluster time-frequency domain reflectometry

被引:21
|
作者
机构
[1] Université Paris Est, ESYCOM (EA 2552), CNAM
来源
| 1600年 / Institute of Electrical and Electronics Engineers Inc., United States卷 / 02期
关键词
Cables; Clustering methods; Crosstalk; Fault location; Multiconductor transmission lines; Reflectometry; Time Domain Reflectometry; Time-Frequency analysis;
D O I
10.1109/MEMC.2013.6512221
中图分类号
学科分类号
摘要
Faced with the continual increase in complexity of wiring networks, their reliability, in particular in embedded fields (such as automotive and aerospace industries) becomes a major issue. In wiring diagnostics, reflectometry methods are commonly used. They are quite efficient for detecting important damage (hard faults) such as short-or open-circuits. These faults can have heavy material (e.g.: fires) and economical consequences. Then detecting them before they happen would be very interesting and useful. Unfortunately no current method is efficient enough for addressing soft faults. This article proposes an original approach to overcome this problem: the Cluster Time-Frequency Domain Reflectometry (CTFDR). Based on the fact that a wire is most often in a bundle with several other wires, this method takes advantage of the resultant near end crosstalk signals to get more information about the state of the wires in the bundle. To make the detection of incipient faults easier, a normalized time-frequency cross correlation function has also been used. © 2013 IEEE Electromagnetic Compatibility Magazine.
引用
收藏
页码:54 / 69
页数:15
相关论文
共 50 条
  • [1] Multi-core Cable Fault Diagnosis using Cluster Time-Frequency Domain Reflectometry
    Lee, Chun-Kwon
    Shin, Yong-June
    2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, : 499 - 504
  • [2] A Statistical Approach in Time-Frequency Domain Reflectometry for Enhanced Fault Detection
    Ji, Gyeong Hwan
    Lee, Geon Seok
    Lee, Chun-Kwon
    Kwon, Gu-Young
    Lee, Yeong Ho
    Shin, Yong-June
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [3] Industrial Applications of Cable Diagnostics and Monitoring Cables via Time-Frequency Domain Reflectometry
    Lee, Hyeong Min
    Lee, Geon Seok
    Kwon, Gu-Young
    Bang, Su Sik
    Shin, Yong-June
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1082 - 1091
  • [4] Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable
    Shin, YJ
    Powers, EJ
    Choe, TS
    Hong, CY
    Song, ES
    Yook, JG
    Park, JB
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (06) : 2493 - 2500
  • [5] Reinforcement Learning-Based Automation of Time-Frequency Domain Reflectometry
    Bang, Su Sik
    Kwon, Gu-Young
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 4171 - 4180
  • [6] Fault detection in fieldbuses with time domain reflectometry
    Hartebrodt, M
    Kabitzsch, K
    2004 IEEE AFRICON: 7TH AFRICON CONFERENCE IN AFRICA, VOLS 1 AND 2: TECHNOLOGY INNOVATION, 2004, : 391 - 396
  • [7] Natural Amplification of Soft Defects Signatures in Cables Using Binary Time Domain Reflectometry
    Auzanneau, Fabrice
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 937 - 944
  • [8] Offline Fault Localization Technique on HVDC Submarine Cable via Time-Frequency Domain Reflectometry
    Kwon, Gu-Young
    Lee, Chun-Kwon
    Lee, Geon Seok
    Lee, Yeong Ho
    Chang, Seung Jin
    Jung, Chae-Kyun
    Kang, Ji-Won
    Shin, Yong-June
    IEEE TRANSACTIONS ON POWER DELIVERY, 2017, 32 (03) : 1626 - 1635
  • [9] Research on Fault Location of High Temperature Superconducting Cable Based on Time-frequency Domain Reflectometry
    Wang Y.
    Yao Z.
    Xie W.
    Wu J.
    Han Y.
    Yin Y.
    Zhao G.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (05): : 1540 - 1546
  • [10] Active Fault Location in Distribution Network using Time-Frequency Reflectometry
    Ghaderi, Amin
    Mohammadpour, Hossein Ali
    Ginn, Herbert
    2015 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2015,