Trapezoidal Step Scheduler for Model-Agnostic Meta-Learning in Medical Imaging

被引:0
|
作者
Voon, Wingates [1 ]
Hum, Yan Chai [1 ]
Tee, Yee Kai [1 ]
Yap, Wun-She [2 ]
Lai, Khin Wee [3 ]
Nisar, Humaira [4 ]
Mokayed, Hamam [5 ]
机构
[1] Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Mechatron & Biomed Engn, Sungai Long, Malaysia
[2] Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Elect & Elect Engn, Sungai Long, Malaysia
[3] Univ Malaya, Dept Biomed Engn, Kuala Lumpur, Malaysia
[4] Univ Tunku Abdul Rahman, Fac Engn & Green Technol, Dept Elect Engn, Kampar, Malaysia
[5] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
关键词
Few-shot learning; Medical image classification; Trapezoidal step scheduler; Model-agnostic meta-learning;
D O I
10.1016/j.patcog.2024.111316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model-Agnostic Meta-learning (MAML) is a widely adopted few-shot learning (FSL) method designed to mitigate the dependency on large, labeled datasets of deep learning-based methods in medical imaging analysis. However, MAML's reliance on a fixed number of gradient descent (GD) steps for task adaptation results in computational inefficiency and task-level overfitting. To address this issue, we introduce Tra-MAML, which optimizes the balance between model adaptation capacity and computational efficiency through a trapezoidal step scheduler (TRA). The TRA scheduler dynamically adjusts the number of GD steps in the inner optimization loop: initially increasing the steps uniformly to reduce variance, maintaining the maximum number of steps to enhance adaptation capacity, and finally decreasing the steps uniformly to mitigate overfitting. Our evaluation of TraMAML against selected FSL methods across four medical imaging datasets demonstrates its superior performance. Notably, Tra-MAML outperforms MAML by 13.36% on the BreaKHis40X dataset in the 3-way 10-shot scenario.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Cross Domain Adaptation of Crowd Counting with Model-Agnostic Meta-Learning
    Hou, Xiaoyu
    Xu, Jihui
    Wu, Jinming
    Xu, Huaiyu
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [22] Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?
    Chen, Lisha
    Chen, Tianyi
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [23] Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
    Vuorio, Risto
    Sun, Shao-Hua
    Hu, Hexiang
    Lim, Joseph J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Visual analysis of meteorological satellite data via model-agnostic meta-learning
    Shiyu Cheng
    Hanwei Shen
    Guihua Shan
    Beifang Niu
    Weihua Bai
    Journal of Visualization, 2021, 24 : 301 - 315
  • [25] Specific Emitter Identification With Limited Samples: A Model-Agnostic Meta-Learning Approach
    Yang, Ning
    Zhang, Bangning
    Ding, Guoru
    Wei, Yimin
    Wei, Guofeng
    Wang, Jian
    Guo, Daoxing
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) : 345 - 349
  • [26] On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
    Fallah, Alireza
    Mokhtari, Aryan
    Ozdaglar, Asuman
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1082 - 1091
  • [27] Visual analysis of meteorological satellite data via model-agnostic meta-learning
    Cheng, Shiyu
    Shen, Hanwei
    Shan, Guihua
    Niu, Beifang
    Bai, Weihua
    JOURNAL OF VISUALIZATION, 2021, 24 (02) : 301 - 315
  • [28] Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning
    Kalais, Konstantinos
    Chatzis, Sotirios
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10586 - 10597
  • [29] Few-shot RUL estimation based on model-agnostic meta-learning
    Mo, Yu
    Li, Liang
    Huang, Biqing
    Li, Xiu
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (05) : 2359 - 2372
  • [30] Few-shot RUL estimation based on model-agnostic meta-learning
    Yu Mo
    Liang Li
    Biqing Huang
    Xiu Li
    Journal of Intelligent Manufacturing, 2023, 34 : 2359 - 2372