Mechanical Properties and Damage Constitutive Model of Saturated Sandstone Under Freeze-Thaw Action

被引:0
|
作者
Feng, Meimei [1 ,2 ]
Cao, Xiaoxiao [3 ]
Wu, Taifeng [2 ]
Yuan, Kangsheng [2 ]
机构
[1] China Univ Min & Technol, State Key Lab Intelligent Construction & Hlth Oper, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
[3] Kyushu Univ, Dept Earth Resources Engn, Lab Rock Engn & Min Machinery, Fukuoka 8190395, Japan
关键词
freeze-thaw; water-force coupling; mechanical properties; nuclear magnetic resonance; damage model;
D O I
10.3390/ma17235905
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to investigate the impact of freeze-thaw damage on sandstone under the coupling of ground stress and pore water pressure, three types of porous sandstone were subjected to freezing at different negative temperatures (-5 degrees C, -10 degrees C, -15 degrees C, and -20 degrees C). Subsequently, hydraulic coupling triaxial compression tests were conducted on the frozen and thawed sandstone. We analyzed the effects of porosity and freezing temperature on the mechanical properties of sandstone under hydraulic coupling and performed nuclear magnetic resonance tests on sandstone samples before and after freezing and thawing. The evolution of the pore structure in sandstone at various freezing and thawing stages was studied, and a statistical damage constitutive model was established to validate the test results. The results indicate that the stress-strain curves of sandstone samples under triaxial compression after a freeze-thaw cycle exhibit minimal changes compared to those without freezing at normal temperature. The peak deviator stress shows a decreasing trend with decreasing freezing temperature, particularly between -5 degrees C and -10 degrees C, and then gradually stabilizes. The elastic modulus of sandstone with different porosity decreases with the decrease in freezing temperature, and the decrease is more obvious in the range of -5 degrees C similar to-10 degrees C, decreasing by 2.33%, 6.11%, and 10.5%, respectively. Below -10 degrees C, the elastic modulus becomes similar to that at -10 degrees C, and the change tends to stabilize. The nuclear magnetic porosity of sandstone samples significantly increases after freezing and thawing. The smaller the initial porosity, the greater the rate of change in nuclear magnetic porosity after a freeze-thaw cycle. The effects of freeze-thaw damage on the T2 distribution of sandstone with different porosity levels vary. We established a statistical damage constitutive model considering the combined effects of freeze-thaw damage, ground stress, and pore water pressure. The compaction coefficient K was introduced into the constitutive model for optimization. The change trend of the theoretical curve closely aligns with that of the test curve, better characterizing the stress-strain relationship of sandstone under complex pressure environments. The research findings can provide a scientific basis for wellbore wall design and subsequent maintenance in complex environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Rock Damage Constitutive Model Based on the Modified Logistic Equation under Freeze-Thaw and Load Conditions
    Meng, Xiangzhen
    Zhang, Huimei
    Liu, Xiaoyu
    JOURNAL OF COLD REGIONS ENGINEERING, 2021, 35 (04)
  • [22] Study on Mechanical Properties of Deep Expansive Soil and Coupling Damage Model of Freeze-Thaw Action and Loading
    Zhu, Zhuliang
    Lin, Bin
    Chen, Shiwei
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [23] Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles
    Niu, Caoyuan
    Zhu, Zheming
    Zhou, Lei
    Li, Xiaohan
    Ying, Peng
    Dong, Yuqing
    Deng, Shuai
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2021, 191
  • [24] A Damage Model of Concrete under Freeze-Thaw Cycles
    卫军
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2003, (03) : 40 - 42
  • [25] A damage model of concrete under freeze-thaw cycles
    Wei Jun
    Wu Xing-hao
    Zhao Xiao-long
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (3): : 40 - 42
  • [26] A damage model of concrete under freeze-thaw cycles
    Wei, J
    Wu, XH
    Zhao, XL
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2003, 18 (03): : 40 - 42
  • [27] Effect of Freeze-Thaw Damage on the Physical, Mechanical, and Acoustic Behavior of Sandstone in Urumqi
    Xu, Junce
    Pu, Hai
    Sha, Ziheng
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [28] Damage constitutive prediction model for rock under freeze-thaw cycles based on mesoscopic damage definition
    Meng, Xiangzhen
    Zhang, Huimei
    Yuan, Chao
    Li, Yugen
    Liu, Xiaoyu
    Chen, Shiguan
    Shen, Yanjun
    ENGINEERING FRACTURE MECHANICS, 2023, 293
  • [29] Decay function and damage strain model of fresh sandstone subjected to freeze-thaw cycles
    Qi, Changqing
    Guo, Weichao
    Li, Qingpeng
    Ma, Xiaofan
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2023, 82 (05)
  • [30] Effect of freeze-thaw cycles on mechanical properties and permeability of red sandstone under triaxial compression
    Jin Yu
    Xu Chen
    Hong Li
    Jia-wen Zhou
    Yan-yan Cai
    Journal of Mountain Science, 2015, 12 : 218 - 231