Managing Railway Bridges Crossing Waterways through a Machine Learning-Based Maintenance Policy

被引:0
|
作者
Wang, Tianyu [1 ]
Takayanagi, Tsuyoshi [2 ]
Chen, Chi-Wei [3 ]
Reiffsteck, Philippe [4 ]
Chevalier, Christophe [4 ]
Schmidt, Franziska [5 ]
机构
[1] Guangzhou Huali Coll, 11,Huali Rd, Guangzhou 511325, Peoples R China
[2] Railway Tech Res Inst, Disaster Prevent Technol Div, Geotech Hazard & Risk Mitigat Lab, Tokyo 1850034, Japan
[3] Soc Natl Chemins fer Francais Reseau, Dept Ouvrages Art, EMF DET, DTR DGII, F-93212 La Plaine, France
[4] Univ Gustave Eiffel, GERS SRO, Marne La Vallee, France
[5] Univ Gustave Eiffel, MAST EMGCU, Marne La Vallee, France
关键词
Bridges crossing waterways; Machine learning; Maintenance policy; Natural hazards; Railway bridge; Scour; SCOUR DEPTH;
D O I
10.1061/JBENF2.BEENG-6922
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recently, more frequent and severe natural hazards that are caused by climate change have posed a great threat to the safety of transport systems worldwide. To enhance bridges' resilience to natural hazards, this paper proposes a new maintenance policy that is based on machine learning (ML) for managing bridges that cross waterways in France. Two ML models, for example, random forest (RF) and extreme gradient boosting (XGBoost) classifiers, are tested on bridges in France and Japan to investigate the model's practicality and robustness. Data from these bridges has never been seen by the model before; however, it is in the same range as the original data set. To verify the test results on the unseen data, predictions from the French cases are compared with engineering judgment, and they are in agreement (95% between the senior engineer and the XGBoost model). When comparing the Japanese case test results with the Japanese guideline's scoring table (ST), predictions are not as accurate as in the French cases. This might be caused by the different data distribution between the two countries and the lower threshold for high scour risk cases in the Japanese guidelines. Based on the results of the original and unseen data sets, application scenarios are suggested for each model. Finally, to facilitate the use of the proposed model, a friendly web application was demonstrated to reduce computational complexity. The outcome of this paper could help to identify bridges that are vulnerable to scour in an effective yet intelligent way, which will, in the end, ensure the safety of the rail network. In addition, it could provide insights to other countries' transport agencies who want to develop their ML-based maintenance policy.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Survey on Audio-Video Based Defect Detection Through Deep Learning in Railway Maintenance
    DE DONATO, L. O. R. E. N. Z. O.
    FLAMMINI, F. R. A. N. C. E. S. C. O.
    MARRONE, S. T. E. F. A. N. O.
    MAZZARIELLO, C. L. A. U. D. I. O.
    NARDONE, R. O. B. E. R. T. O.
    SANSONE, C. A. R. L. O.
    VITTORINI, V. A. L. E. R. I. A.
    IEEE ACCESS, 2022, 10 : 65376 - 65400
  • [42] Probabilistic seismic analysis of bridges through machine learning approaches
    Soleimani, Farahnaz
    STRUCTURES, 2022, 38 : 157 - 167
  • [43] Machine Learning-Based System for Managing Energy Efficiency of Public Buildings: An Approach towards Smart Cities
    Ajagunsegun, Taiwo
    Li, Jian
    Bamisile, Olusola
    Ohakwe, Chinyere
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 297 - 300
  • [44] Machine learning-based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges
    Civera, Marco
    Mugnaini, Vezio
    Zanotti Fragonara, Luca
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (10)
  • [45] Advancing infrastructure resilience: machine learning-based prediction of bridges’ rating factors under autonomous truck platoons
    Elshazli M.T.
    Hussein D.
    Bhat G.
    Abdel-Rahim A.
    Ibrahim A.
    Journal of Infrastructure Preservation and Resilience, 2024, 5 (01):
  • [46] Machine Learning-Based Hurricane Wind Reconstruction
    Yang, Qidong
    Lee, Chia-Ying
    Tippett, Michael K.
    Chavas, Daniel R.
    Knutson, Thomas R.
    WEATHER AND FORECASTING, 2022, 37 (04) : 477 - 493
  • [47] Machine learning-based wavelength detection system
    Kwon, Ik-Hyun
    Choi, Yong-Joon
    Ide, Tomoya
    Noda, Toshihiko
    Takahashi, Kazuhiro
    Sawada, Kazuaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (01)
  • [48] Machine Learning-Based Mapping for Mineral Exploration
    Zuo, Renguang
    Carranza, Emmanuel John M.
    MATHEMATICAL GEOSCIENCES, 2023, 55 (07) : 891 - 895
  • [49] Machine Learning-Based Mapping for Mineral Exploration
    Renguang Zuo
    Emmanuel John M. Carranza
    Mathematical Geosciences, 2023, 55 : 891 - 895
  • [50] Machine learning-based assessment of diabetes risk
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    APPLIED INTELLIGENCE, 2025, 55 (02)