Translocation of ssDNA through Charged Graphene Nanopores: Effect of the Charge Density

被引:1
|
作者
Zhang, Yuan-Shuo [1 ]
Qi, Zhi-Ya [1 ]
Ding, Ming-Ming [1 ,2 ]
Li, Ming-Lun [3 ]
Shi, Tong-Fei [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Jieyang Branch Chem & Chem Engn Guangdong Lab, Jieyang 515200, Peoples R China
[3] Univ Massachusetts Amherst, Dept Polymer Sci & Engn, 120 Governors Dr, Amherst, MA 01003 USA
基金
中国国家自然科学基金;
关键词
Nanopore sequencing; Graphene nanoslit; DNA translocation; Electroosmotic flow; DNA TRANSLOCATION; MOLECULAR-DYNAMICS; FIELD;
D O I
10.1007/s10118-024-3215-4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanopore sequencing harnesses changes in ionic current as nucleotides traverse a nanopore, enabling real-time decoding of DNA/RNA sequences. The instruments for the dynamic behavior of substances in the nanopore on the molecular scale are still very limited experimentally. This study employs all-atom molecular dynamics (MD) simulations to explore the impact of charge densities on graphene nanopore in the translocation of single-stranded DNA (ssDNA). We find that the magnitude of graphene's charge, rather than the charge disparity between ssDNA and graphene, significantly influences ssDNA adsorption and translocation speed. Specifically, high negative charge densities on graphene nanopores are shown to substantially slow down ssDNA translocation, highlighting the importance of hydrodynamic effects and electrostatic repulsions. This indicates translocation is crucial for achieving distinct ionic current blockades, which plays a central role for DNA sequencing accuracy. Our findings suggest that negatively charged graphene nanopores hold considerable potential for optimizing DNA sequencing, marking a critical advancement in this field.
引用
收藏
页码:2048 / 2058
页数:11
相关论文
共 50 条
  • [41] Controllable ion transport in bilayer graphene with charged nanopores
    Xin, Yanbo
    Gao, Qin
    Huang, Jiangshun
    Gao, Juan
    Geng, Xueli
    Shi, Hongliang
    Wang, Mei
    Xiao, Zhisong
    Chu, Paul K.
    Huang, Anping
    MATERIALS TODAY CHEMISTRY, 2023, 34
  • [42] DNA translocation through an array of kinked nanopores
    Chen, Zhu
    Jiang, Yingbing
    Dunphy, Darren R.
    Adams, David P.
    Hodges, Carter
    Liu, Nanguo
    Zhang, Nan
    Xomeritakis, George
    Jin, Xiaozhong
    Aluru, N. R.
    Gaik, Steven J.
    Hillhouse, Hugh W.
    Brinker, C. Jeffrey
    NATURE MATERIALS, 2010, 9 (08) : 667 - 675
  • [43] DNA translocation through an array of kinked nanopores
    Chen Z.
    Jiang Y.
    Dunphy D.R.
    Adams D.P.
    Hodges C.
    Liu N.
    Zhang N.
    Xomeritakis G.
    Jin X.
    Aluru N.R.
    Gaik S.J.
    Hillhouse H.W.
    Brinker C.J.
    Nature Materials, 2010, 9 (8) : 667 - 675
  • [44] DNA Translocation through Hybrid Bilayer Nanopores
    Balasubramanian, Ramkumar
    Pal, Sohini
    Joshi, Himanshu
    Rao, Anjana
    Naik, Akshay
    Varma, Manoj
    Chakraborty, Banani
    Maiti, Prabal K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (18): : 11908 - 11916
  • [45] Translocation of polymer chains through interacting nanopores
    Luo, Meng-Bo
    POLYMER, 2007, 48 (26) : 7679 - 7686
  • [46] Dynamics of polymer translocation through kinked nanopores
    Wang, Junfang
    Wang, Yilin
    Luo, Kaifu
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (08):
  • [47] Translocation of Precision Polymers through Biological Nanopores
    Boukhet, Mordjane
    Konig, Niklas Felix
    Al Ouahabi, Abdelaziz
    Baaken, Gerhard
    Lutz, Jean-Francois
    Behrends, Jan C.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (24)
  • [48] Thermophoretic Manipulation of DNA Translocation through Nanopores
    He, Yuhui
    Tsutsui, Makusu
    Scheicher, Ralph H.
    Bai, Fan
    Taniguchi, Masateru
    Kawai, Tomoji
    ACS NANO, 2013, 7 (01) : 538 - 546
  • [49] Pulley Effect in the Capture of DNA Translocation through Solid-State Nanopores
    Chen, Shulan
    He, Wen
    Li, Jun
    Xu, Derong
    Zhao, Rui
    Zhu, Libo
    Wu, Hongwen
    Xu, Fei
    LANGMUIR, 2024, 40 (11) : 5799 - 5808
  • [50] Analysis of electrolyte transport through charged nanopores
    Peters, P. B.
    van Roij, R.
    Bazant, M. Z.
    Biesheuvel, P. M.
    PHYSICAL REVIEW E, 2016, 93 (05)