Enhanced High-Temperature Capacitive Performance of PEI Dielectrics by an Adjustable Al2O3 Interlayer

被引:2
作者
Chen, Xi [1 ]
Wei, Yun [1 ]
Wang, Fan [1 ]
Peng, Bo [1 ]
Li, Xiaona [1 ]
Hu, Deng [1 ]
He, Guanghu [1 ]
Yan, Zhongna [2 ]
Luo, Hang [1 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 20期
基金
中国国家自然科学基金;
关键词
Polymer-based dielectrics; High-temperature capacitiveperformance; Poly(ether imide); Multilayer composites; Al2O3; ENERGY-STORAGE; ELECTRICAL BREAKDOWN; POLYMER;
D O I
10.1021/acsapm.4c02179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the escalating dielectric capacitor application in miniaturization and integration, high energy density is urgently needed for polymer dielectrics. Due to the polymer dielectrics being prone to breakdown as the temperature increases, it is challenging to break the adverse coupling between the breakdown resistance and heat resistance of polymer dielectrics at high temperatures. Herein, poly(ether imide) (PEI)-based dielectrics with an adjustable Al2O3 interlayer by atomic layer deposition are proposed. The inorganic interlayer Al2O3 with a wide bandgap (8.6 eV) not only can improve the dielectric constant but also can reduce leakage current by its block effects capture free electrons, leading to enhanced capacitive performance at high temperatures. The results show that the energy density of the multilayer composite with an optimal 50 nm thickness of Al2O3 layers reaches 7.02 J/cm(3) under the 550 kV/mm electric field with an energy efficiency of 94.94%, which is about 49% higher than that of pure PEI. Even at 150 degrees C, the energy density maintains 4.84 J/cm(3) under 540 kV/mm, which is 1.5 times that of pure PEI. This work provides a feasible route for polymer dielectrics for energy storage applications at high temperatures.
引用
收藏
页码:12616 / 12622
页数:7
相关论文
共 45 条
[11]   Surface proton hopping conduction mechanism dominant polymer electrolytes created by self-assembly of bicontinuous cubic liquid crystals [J].
Ichikawa, Takahiro ;
Yamada, Takeshi ;
Aoki, Nanami ;
Maehara, Yuki ;
Suda, Kaori ;
Kobayashi, Tsubasa .
CHEMICAL SCIENCE, 2024, 15 (19) :7034-7040
[12]   Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices [J].
Iqbal, Muhammad Zahir ;
Aziz, Umer .
JOURNAL OF ENERGY STORAGE, 2022, 46
[13]   Improved energy storage performance of polyimide nanocomposites by constructing the meso- and macroscopic interfaces [J].
Ji, Minzun ;
Min, Daomin ;
Li, Yuwei ;
Yang, Lingyu ;
Wu, Qingzhou ;
Liu, Wenfeng ;
Li, Shengtao .
MATERIALS TODAY ENERGY, 2023, 31
[14]   Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers [J].
Li, He ;
Ai, Ding ;
Ren, Lulu ;
Yao, Bin ;
Han, Zhubing ;
Shen, Zhonghui ;
Wang, Jianjun ;
Chen, Long-Qing ;
Wang, Qing .
ADVANCED MATERIALS, 2019, 31 (23)
[15]   Electric energy density of dielectric nanocomposites [J].
Li, J. Y. ;
Zhang, L. ;
Ducharme, Stephen .
APPLIED PHYSICS LETTERS, 2007, 90 (13)
[16]   Ultra-high electron affinity and peripheral electronegativity co-constructing all-organic dielectrics with outstanding capacitive performance at high temperature [J].
Li, Xiaona ;
Luo, Hang ;
Wan, Yuting ;
Peng, Bo ;
Liu, Yuan ;
Chen, Sheng ;
Zhang, Dou .
CHEMICAL ENGINEERING JOURNAL, 2024, 488
[17]   Enhancing High-Temperature Energy Storage Performance of PEI-Based Dielectrics by Incorporating ZIF-67 with a Narrow Bandgap [J].
Li, Xiaona ;
Luo, Hang ;
Yang, Chenchen ;
Wang, Fan ;
Jiang, Xun ;
Guo, Ru ;
Zhang, Dou .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (35) :41828-41838
[18]   Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion [J].
Liu, Guanfu ;
Chen, Liang ;
Qi, He .
MICROSTRUCTURES, 2023, 3 (02)
[19]   High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers [J].
Liu, Xue-Jie ;
Cheng, Meng ;
Zhang, Yiyi ;
Xing, Yunqi ;
Dang, Zhi-Min ;
Zha, Jun-Wei .
COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 245
[20]   Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers [J].
Liu, Yuan ;
Luo, Hang ;
Xie, Haoran ;
Xiao, Zhida ;
Wang, Fan ;
Jiang, Xun ;
Zhou, Xuefan ;
Zhang, Dou .
MICROSTRUCTURES, 2023, 3 (01)