Influence of Candle Emissions on Monoterpene Oxidation Chemistry and Secondary Organic Aerosol

被引:0
作者
Wang, Kai [1 ,2 ]
Rasmussen, Berit Brondum [1 ]
Thomsen, Ditte [1 ]
Zhang, Yun [3 ,4 ]
Jensen, Mads Mork [1 ]
Kristensen, Kasper [5 ]
Hoffmann, Thorsten [3 ]
Glasius, Marianne [1 ]
Bilde, Merete [1 ]
机构
[1] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark
[2] China Agr Univ, Coll Resources & Environm Sci, State Key Lab Nutrient Use & Management, Natl Acad Agr Green Dev,Natl Observ & Res Stn Agr, Beijing 100193, Peoples R China
[3] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, D-55128 Mainz, Germany
[4] China Agr Univ, Coll Sci, Innovat Ctr Pesticide Res, Dept Appl Chem, Beijing 100193, Peoples R China
[5] Aarhus Univ, Dept Biol & Chem Engn, DK-8000 Aarhus C, Denmark
关键词
indoor air pollutants; candle emission; alpha-pineneozonolysis; particle formation; chemical composition; INDOOR ENVIRONMENTS; ALPHA-PINENE; EXPOSURE ASSESSMENT; PARTICLE FORMATION; D-LIMONENE; OZONE; OZONOLYSIS; NO3; AIR; PRODUCTS;
D O I
10.1021/acs.est.4c04075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Candle burning is a considerable contributor to indoor pollutants, while secondary organic aerosols (SOA) from monoterpene ozonolysis represent another type. However, knowledge of the interactions of different indoor pollutants is limited. We investigated physicochemical properties of SOA generated from typical indoor chemistry of the O3/alpha-pinene reaction with and without the presence of particles and gases from a burning candle. Ozonolysis of alpha-pinene in the presence of candle gaseous emissions yielded a considerably lower particle number, larger particle sizes, and lower particle oxygen-to-carbon ratio compared with experiments without candle emissions. More nitrogen-containing organic compounds were observed in the aerosol phase with candle emissions. Furthermore, concentrations of some typical particle-phase products from the O3/alpha-pinene reaction (i.e., terebic acid, cis-pinic acid, and 3-methyl-1,2,3-butanetricarboxylic acid) were less abundant in the presence of candle emissions. The predicted volatility of particulate organic compounds was higher in experiments with candle emissions. The study demonstrates that candle burning can affect the chemical and physical properties of particles formed from other sources (e.g., alpha-pinene ozonolysis) by affecting gas-phase chemistry and gas-particle partitioning.
引用
收藏
页码:21265 / 21274
页数:10
相关论文
共 50 条
[21]   Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes [J].
Zhao, D. F. ;
Kaminski, M. ;
Schlag, P. ;
Fuchs, H. ;
Acir, I. -H. ;
Bohn, B. ;
Haeseler, R. ;
Kiendler-Scharr, A. ;
Rohrer, F. ;
Tillmann, R. ;
Wang, M. J. ;
Wegener, R. ;
Wildt, J. ;
Wahner, A. ;
Mentel, Th. F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (02) :991-1012
[22]   Secondary organic aerosol from biogenic volatile organic compound mixtures [J].
Hatfield, Meagan L. ;
Hartz, Kara E. Huff .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) :2211-2219
[23]   Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photo-oxidation [J].
Liu, Chang ;
Chu, Biwu ;
Liu, Yongchun ;
Ma, Qingxin ;
Ma, Jinzhu ;
He, Hong ;
Li, Junhua ;
Hao, Jiming .
ATMOSPHERIC ENVIRONMENT, 2013, 77 :781-789
[24]   Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons [J].
Fry, Juliane L. ;
Draper, Danielle C. ;
Barsanti, Kelley C. ;
Smith, James N. ;
Ortega, John ;
Winkle, Paul M. ;
Lawler, Michael J. ;
Brown, Steven S. ;
Edwards, Peter M. ;
Cohen, Ronald C. ;
Lee, Lance .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (20) :11944-11953
[25]   Kinetics of Limonene Secondary Organic Aerosol Oxidation in the Aqueous Phase [J].
Witkowski, Bartlomiej ;
Al-sharafi, Mohammed ;
Gierczak, Tomasz .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (20) :11583-11590
[26]   Secondary Organic Aerosol Formation from Healthy and Aphid-Stressed Scots Pine Emissions [J].
Faiola, Celia L. ;
Pullinen, Iida ;
Buchholz, Angela ;
Khalaj, Farzaneh ;
Ylisirnio, Arttu ;
Kari, Eetu ;
Miettinen, Pasi ;
Holopainen, Jarmo K. ;
Kivimaenpaa, Minna ;
Schobesberger, Siegfried ;
Yli-Juuti, Taina ;
Virtanen, Annele .
ACS EARTH AND SPACE CHEMISTRY, 2019, 3 (09) :1756-1772
[27]   α-Pinene, Limonene, and Cyclohexene Secondary Organic Aerosol Hygroscopicity and Oxidation Level as a Function of Volatility [J].
Cain, Kerrigan P. ;
Liangou, Aikaterini ;
Davidson, Michael L. ;
Pandis, Spyros N. .
AEROSOL AND AIR QUALITY RESEARCH, 2021, 21 (05)
[28]   Limonene photocatalytic oxidation at ppb levels: Assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation [J].
Ourrad, H. ;
Thevenet, F. ;
Gaudion, V. ;
Riffault, V. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 168 :183-194
[29]   Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol [J].
Kroll, Jesse H. ;
Donahue, Neil M. ;
Jimenez, Jose L. ;
Kessler, Sean H. ;
Canagaratna, Manjula R. ;
Wilson, Kevin R. ;
Altieri, Katye E. ;
Mazzoleni, Lynn R. ;
Wozniak, Andrew S. ;
Bluhm, Hendrik ;
Mysak, Erin R. ;
Smith, Jared D. ;
Kolb, Charles E. ;
Worsnop, Douglas R. .
NATURE CHEMISTRY, 2011, 3 (02) :133-139
[30]   Secondary Organic Aerosol Formation and Chemistry from the OH-Initiated Oxidation of Monofunctional C10 Species [J].
Hallward-Driemeier, Andrew H. ;
Hall, Jonathan R. ;
Spence, Katie A. ;
Telicki, Benjamin P. ;
Schaeffer, Amelia F. ;
Avila, Jose C. ;
Albores, Isabel S. ;
Carrasquillo, Anthony J. .
ACS EARTH AND SPACE CHEMISTRY, 2024, 8 (05) :907-919