Modeling the melting temperature of semiconductor nanocrystals

被引:0
|
作者
Sheng, Hongchao [1 ]
Xiao, Beibei [2 ]
Jiang, Xiaobao [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Dept Mat Sci & Engn, Zhenjiang 212003, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
关键词
Size effect; Melting temperature; Semiconductor; Nanocrystals; Thermodynamics; SIZE DEPENDENCE; COHESIVE ENERGY; POINT; SHAPE; THERMODYNAMICS; NANOPARTICLES;
D O I
10.1016/j.cplett.2024.141659
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring the thermal stability of semiconductor crystals at the nanoscale is of great significance for the design, fabrication, and application of modern quantum devices. In this paper, we propose a thermodynamic model to predict the melting temperature of semiconductor nanocrystals, which is in good agreement with the experimental results of Si, Bi, CdS, and CdSe. In addition, when the size decreases, the drop of melting temperature curves tends to be synchronized with the size-dependent solid/liquid interface energy and surface stress ratio gamma sl(D)/f(D), which reveals the physical origin of the decrease in the melting temperature of the semiconductor nanocrystals.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters
    Samsonov, V. M.
    Vasilyev, S. A.
    Nebyvalova, K. K.
    Talyzin, I. V.
    Sdobnyakov, N. Yu.
    Sokolov, D. N.
    Alymov, M. I.
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (08)
  • [32] Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals
    Yuan, Gangcheng
    Higginbotham, Heather F.
    Han, Jiho
    Yadav, Anchal
    Kirkwood, Nicholas
    Mulvaney, Paul
    Bell, Toby D. M.
    Cole, Jared H.
    Funston, Alison M.
    ACS NANO, 2023, 17 (19) : 19109 - 19120
  • [33] Modeling the melting temperature of nanoscaled bimetallic alloys
    Li, Ming
    Zhu, Tian-Shu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (25) : 16958 - 16963
  • [34] Size effect on the bandgap of semiconductor nanocrystals
    Yang, C. C.
    Jiang, Q.
    NANOSCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2007, 121-123 : 1069 - 1072
  • [35] Melting and thermodynamic properties of rare gas nanocrystals
    Karasevskii, A. I.
    Lubashenko, V. V.
    LOW TEMPERATURE PHYSICS, 2009, 35 (04) : 275 - 281
  • [36] Atomistically informed melting models for aluminum nanocrystals
    Mathur, Nilkumar
    Mane, Tejas
    Sundaram, Dilip
    CHEMICAL PHYSICS, 2019, 522 : 188 - 198
  • [37] Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals
    Lu, H. M.
    Li, P. Y.
    Cao, Z. H.
    Meng, X. K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (18) : 7598 - 7602
  • [38] Finite-size effect on band structure and photoluminescence of semiconductor nanocrystals
    Lang, X. Y.
    Zheng, W. T.
    Jiang, Q.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (01) : 5 - 9
  • [39] The melting temperature of nanorods: diameter and length dependences
    Zhang, Zhengming
    Meng, Xianshang
    Lu, Haiming
    Li, Ming
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (25) : 14210 - 14215
  • [40] Multishell semiconductor nanocrystals
    Dorfs, Dirk
    Eychmueller, Alexander
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2006, 220 (12): : 1539 - 1552