Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors

被引:2
|
作者
Xu, Bingbing [1 ,2 ,4 ]
Zhang, Yue [1 ,2 ]
Li, Jia [1 ,2 ]
Wang, Boxiang [1 ,2 ]
Li, Ruoxin [3 ]
Cheng, Dehong [1 ,2 ]
Chang, Guangtao [3 ]
机构
[1] Liaodong Univ, Coll Text & Garment, Dandong 118003, Peoples R China
[2] Liaodong Univ, Liaoning Prov Key Lab Funct Text Mat, Dandong 118003, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, 199 Ren Ai Rd, Suzhou 215123, Peoples R China
[4] Soochow Univ, Key Lab Jiangsu Prov Silk Engn, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; Self-healing; Triple network; Strain sensor; SENSITIVITY; RESISTANT; PVA;
D O I
10.1016/j.ijbiomac.2024.138811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conductive hydrogels have attracted intensive attention for their promising applications in flexible electronics, sensors, and electronic skins. However, extremely poor adaptability under cold or dry environmental conditions along with inferior repairability seriously hinders the development of hydrogels in wearable electronics. Here, a triple network conductive hydrogel (PBCPA-MXene) was prepared by proportionally mixing polyvinyl alcohol (PVA), borax, chitosan (CS), phytic acid (PA), and MXene. The prepared triple network hydrogels composed of robust chitosan polysaccharide as the first network, tough PVA biopolymer gel as the second network, and MXene nanosheets as the third network. Facilitated by triple networks, multiple hydrogen bonds, and electrostatic interactions of CS and PA, the obtained hydrogels not only exhibited outstanding mechanical properties (tensile strain of similar to 1580 %, stress of similar to 280 kPa) and electrical properties (similar to 2.72 S/m), but also possessed excellent self-healing, self-adhesion, anti-freezing and anti-drying properties. This work presents a strategy for the development of biopolysaccharide hydrogels for applications in the field of sensors.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] CHITOSAN-BASED SELF-HEALING HYDROGEL FOR LIVER TISSUE ENGINEERING
    Tai, Yu-Chai
    Hou, Yung-Te
    TISSUE ENGINEERING PART A, 2022, 28 : S285 - S285
  • [32] Development of chitosan towards the self-healing and mechanically stronger biocompatible hydrogel
    Afgan, Shere
    Yadav, Paramjeet
    Jaiswal, Sheetal
    Pal, Krishtan
    Kumar, Rajesh
    Singh, Virendra
    Koch, Biplob
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2022, 99 (10)
  • [33] Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels
    Liu, Yi
    Lin, Shih-Ho
    Chuang, Wei-Tsung
    Dai, Niann-Tzyy
    Hsu, Shan-hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16032 - 16046
  • [34] Ultrafast Fabrication of Self-Healing and Injectable Carboxymethyl Chitosan Hydrogel Dressing for Wound Healing
    Cao, Jinfeng
    Wu, Ping
    Cheng, Qianqian
    He, Chen
    Chen, Yun
    Zhou, Jinping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 24095 - 24105
  • [35] An injectable, self-healing carboxymethylated chitosan hydrogel with mild photothermal stimulation for wound healing
    Zhang, Xu
    Tan, Bowen
    Wu, Yanting
    Zhang, Min
    Xie, Xi
    Liao, Jinfeng
    CARBOHYDRATE POLYMERS, 2022, 293
  • [36] Design of super stretchability, rapid self-healing, and self-adhesion hydrogel based on starch for wearable strain sensors
    Li, Yanyan
    Wen, Xin
    Li, Xiaoru
    Zahid, Muhammad
    Wang, Hongliang
    Zhang, Jian
    CARBOHYDRATE POLYMERS, 2025, 348
  • [37] Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network
    Ai, Jiayi
    Li, Kai
    Li, Jianbin
    Yu, Fei
    Ma, Jie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 172 : 66 - 73
  • [38] A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors
    Ma, Yinghui
    Liu, Kuo
    Lao, Li
    Li, Xing
    Zhang, Zuocai
    Lu, Shaorong
    Li, Yuqi
    Li, Ziwei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 205 : 491 - 499
  • [39] A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection
    Zheng, Yiqiang
    Li, Yilin
    Wang, Lili
    Xu, Hao
    Han, Wei
    MICROELECTRONIC ENGINEERING, 2024, 291
  • [40] A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors
    Wang, Yufei
    Chen, Zihao
    Chen, Rui
    Wei, Jie
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 53 : 73 - 82