Integral points on a class of elliptic curve

被引:0
作者
Zhu, Huilin [1 ]
Chen, Jianhua [1 ]
机构
[1] School of Mathematics and Statistics, Wuhan University
关键词
Algebraic number factorization; Diophantine equation; Elliptic curve; Fundamental unit; P-adic analysis method;
D O I
10.1007/bf02836647
中图分类号
学科分类号
摘要
We prove all integral points of the elliptic curve y2 = x3-30x+133 are (x, y) = (-7, 0), (-3, ± 14), (2, ± 9), (6, ± 13), (5 143 326, ±11 664 498 677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y2 = (x+a)(x2-ax+b), a, b∈Z, a2 < 4b and find all integer solutions of hyperel-liptic Diophantine equation Dy2 = Ax4+Bx2+C, B2 < 4AC.
引用
收藏
页码:477 / 480
页数:3
相关论文
共 50 条