Weighted Moore-Penrose inverses for dual matrices and its applications

被引:2
作者
Ma, Haifeng [1 ]
Wang, Wen [1 ]
Stanimirovic, Predrag S. [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
[2] Univ Nis, Fac Sci Math, Nish, Serbia
基金
中国国家自然科学基金;
关键词
Dual matrix; Weighted compact dual singular value; decomposition; Weighted Moore-Penrose inverse; Standing wave; Traveling wave; DECOMPOSITION; TRANSFORMATION; PERTURBATION; LANGUAGE;
D O I
10.1016/j.amc.2024.129145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Characteristics of weighted Moore-Penrose inverses for dual matrices (W-MP-D inverse) are studied in this investigation. First, we introduce the weighted compact dual singular value decomposition (WCDSVD) on the set of dual matrices. A few equivalent conditions for the existence of the W-MP-D inverse on the set of dual matrices and several explicit representations are given using WCDSVD. Finally, the simulation of standing waves (s-waves) and traveling waves (t-waves) and the application of that simulation in the t-waves identification in the brain are given.
引用
收藏
页数:14
相关论文
共 53 条
[1]  
Angeles J, 1998, NATO ADV SCI I F-COM, V161, P3
[2]  
Angeles J., 2012, Latest Advances in Robot Kinematics
[3]   Computer graphics representation and transformation of geometric entities using dual unit vectors and line transformations [J].
Azariadis, P ;
Aspragathos, N .
COMPUTERS & GRAPHICS-UK, 2001, 25 (02) :195-209
[4]   Reflections Over the Dual Ring-Applications to Kinematic Synthesis [J].
Belzile, Bruno ;
Angeles, Jorge .
JOURNAL OF MECHANICAL DESIGN, 2019, 141 (07)
[5]  
Ben-Israel A., 2003, Generalized Inverses: Theory and Applications, V2
[6]   Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study [J].
Binder, Jeffrey R. ;
Gross, William L. ;
Allendorfer, Jane B. ;
Bonilha, Leonardo ;
Chapin, Jessica ;
Edwards, Jonathan C. ;
Grabowski, Thomas J. ;
Langfitt, John T. ;
Loring, David W. ;
Lowe, Mark J. ;
Koenig, Katherine ;
Morgan, Paul S. ;
Ojemann, Jeffrey G. ;
Rorden, Christopher ;
Szaflarski, Jerzy P. ;
Tivarus, Madalina E. ;
Weaver, Kurt E. .
NEUROIMAGE, 2011, 54 (02) :1465-1475
[7]  
Cavacece M., 2004, P 2004 ASME C, P57317
[8]   A Neural Network for Moore-Penrose Inverse of Time-Varying Complex-Valued Matrices [J].
Chai, Yiyuan ;
Li, Haojin ;
Qiao, Defeng ;
Qin, Sitian ;
Feng, Jiqiang .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2020, 13 (01) :663-671
[9]  
Cheng H., 1996, INT DES ENG TECHN C
[10]   Dual iterative displacement analysis of spatial mechanisms using the C-H programming language [J].
Cheng, HH ;
Thompson, S .
MECHANISM AND MACHINE THEORY, 1997, 32 (02) :193-207