Influence of the bandwidth of feedback loop in frequency stabilization of external-cavity diode laser by polarization spectroscopy

被引:0
作者
Wang, Jing [1 ]
Yang, Baodong [1 ]
He, Jun [1 ]
Zhao, Jiangyan [1 ]
Zhang, Tiancai [1 ]
Wang, Junmin [1 ]
机构
[1] State Key Laboratory of Quantum optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University
来源
Guangxue Xuebao/Acta Optica Sinica | 2009年 / 29卷 / 02期
关键词
Bandwidth of feedback loop; External-cavity diode laser (ECDL); Laser frequency stabilization; Polarization spectroscopy; Single-atom magneto-optical trap;
D O I
10.3788/AOS20092902.0425
中图分类号
学科分类号
摘要
Based on the experiment of trapping single cesium atoms in magneto-optical trap (MOT), a grating-external-cavity diode laser, which provides the cooling/trapping beams of MOT is locked to cesium 6S1/2F=4→6P3/2F′=5 cycling transition by modulation-free polarization spectroscopy. This frequency locking method uses the dispersion-like curve generated from polarization spectroscopy as frequency-discriminating signal. The error signal is feedback to both current modulation port of diode laser and voltage modulation port of piezoelectric transducer (PZT) in grating external cavity. The locking technique of modulation-free polarization spectroscopy can clearly improve the frequency stability compared with conventional saturation absorption spectroscopic technique. The minimum value of Allan variance is σy(τ) = 4.6 × 10-12 at average time of τ=300 s.
引用
收藏
页码:425 / 430
页数:5
相关论文
共 14 条
  • [1] Wieman C., Hanch T.W., Doppler-free laser polarization spectroscopy, Phys. Rev. Lett., 36, 20, pp. 1170-1173, (1976)
  • [2] Kim J.B., Kong H.J., Lee S.S., Dye laser frequency locking to the hyperfine structure (3S<sub>1/2</sub>F=2-3P<sub>1/2</sub>F=2) of sodium D<sub>1</sub> line by using polarization spectroscopy, Appl. Phys. Lett., 52, 6, pp. 417-419, (1988)
  • [3] Kozuma M., Kourogi M., Ohtsu M., Et al., Frequency stabilization, linewidth reduction and fine detuning of a semiconductor laser by using velocity-selective optical pumping of atomic resonance line, Appl. Phys. Lett., 61, 16, pp. 1895-1897, (1992)
  • [4] Lancaster G.P.T., Conroy R.S., Clifford M.A., Et al., A polarization spectrometer locked diode laser for trapping cold atoms, Opt. Commun., 170, 1, pp. 79-84, (1999)
  • [5] Lu H.B., Wang X.C., Yan H.M., Et al., Frequency stabilization of a Ti:S laser using polarization spectrum line of <sup>85</sup>Rb, J. Optoelectronics · Laser, 11, 6, pp. 573-575, (2000)
  • [6] Ma J., Zhao Y.T., Zhao J.M., Et al., Frequency stabilization of an external-cavity diode laser using polarization spectroscopy without frequency modulation, Chinese J. Lasers, 32, 12, pp. 1605-1608, (2005)
  • [7] Zhou S.Y., Zhou S.Y., Wang Y.Z., Computer sampling error signal control output voltage to stabilize frequency of the Ti:Sapphire laser, Chinese J. Lasers, 30, 1, pp. 9-11, (2003)
  • [8] Harris M.L., Adams C.S., Cornish S.L., Et al., Polarization spectroscopy in rubidium and cesium, Phys. Rev. A, 73, 6, (2006)
  • [9] Wang J.M., Yan S.B., Wang Y.H., Et al., Modulation-free frequency stabilization of a grating-external-cavity diode laser by magnetically induced sub-Doppler dichroism in cesium vapor cell, Jpn. J. Appl. Phys., 43, 3, pp. 1168-1171, (2004)
  • [10] Wang J., He J., Zhang T.C., Et al., Preparation and optical manipulation of single atoms based on atom cooling and trapping, Physics, 37, 2, pp. 103-110, (2008)