Electric-Mechanical coupling analysis of two-dimensional piezoelectric heterogeneous materials in flexible electric devices with extended multiscale isogeometric analysis

被引:1
作者
Xia, Yang [1 ,2 ]
Zhou, Xinyu [1 ,3 ]
Niu, Hongze [1 ]
Liu, Hui [4 ]
Wu, Chengwei [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Mech & Aerosp Engn, Dept Engn Mech, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Mech Engn, Dalian, Peoples R China
[4] Wuhan Univ, Sch Civil Engn, Dept Engn Mech, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric material; Multiscale simulation; Isogeometric analysis; Heterogeneous materials; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; SENSORS; MODEL;
D O I
10.1016/j.euromechsol.2024.105430
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Piezoelectric heterogeneous materials are widely used in flexible electronic device design, enhancing sensitivity to external stimuli like pressure and acceleration. Despite their usefulness, analyzing these inherently periodic structures poses significant computational challenges. In response, this paper presents a multiscale isogeometric analysis approach tailored for simulating piezoelectric materials. We introduce an electric-mechanical coupling model using isogeometric analysis (IGA) for two-dimensional piezoelectric membrane structures, assuming the plane stress hypothesis. Our proposed algorithm enables precise calculation of both displacement and electric potential solutions, demonstrating superior convergence properties compared to traditional finite element methods. Furthermore, we extend this approach to multiscale isogeometric analysis for computing numerical solutions in porous structures and heterogeneous composite piezoelectric materials under tensile and bending conditions. Through rigorous numerical testing, we evaluate the proposed extended multiscale isogeometric analysis method, showcasing its efficacy in achieving a balance between computational efficiency and simulation accuracy. This IGA-based electro-mechanical coupling model and numerical algorithm pave the way for more streamlined and precise simulations of piezoelectric materials within the context of flexible electronic devices.
引用
收藏
页数:17
相关论文
共 43 条
[1]  
Allik H., 1970, International Journal for Numerical Methods in Engineering, V2, P151, DOI 10.1002/nme.1620020202
[2]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[3]  
Brockmann TH, 2009, SOLID MECH APPL, V161, P1
[4]   Performance optimization and broadband design of piezoelectric energy harvesters based on isogeometric topology optimization framework [J].
Cao, Yajun ;
Huang, Huaiwei .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
[5]   MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND APPLICATIONS [J].
Chung, Eric T. ;
Efendiev, Yalchin ;
Lee, Chak Shing .
MULTISCALE MODELING & SIMULATION, 2015, 13 (01) :338-366
[6]   Structural health monitoring with piezoelectric wafer active sensors for space applications [J].
Cuc, Adrian ;
Giurgiutiu, Victor ;
Joshi, Shiv ;
Tidwell, Zeb .
AIAA JOURNAL, 2007, 45 (12) :2838-2850
[7]   Accurate multiscale finite element methods for two-phase flow simulations [J].
Efendiev, Y. ;
Ginting, V. ;
Hou, T. ;
Ewing, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 220 (01) :155-174
[8]   Generalized multiscale finite element methods (GMsFEM) [J].
Efendiev, Yalchin ;
Galvis, Juan ;
Hou, Thomas Y. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 :116-135
[9]   Convergence of a nonconforming multiscale finite element method [J].
Efendiev, YR ;
Hou, TY ;
Wu, XH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :888-910
[10]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334