Highly stretchable, self-healing, adhesive, 3D-printable and antibacterial double-network hydrogels for multifunctional wearable sensors

被引:1
|
作者
Wei, Jinmei [1 ,2 ]
Liu, Chenglu [1 ,2 ]
Shi, Lin [1 ]
Liu, Yongping [1 ,2 ]
Lu, Huidan [1 ,2 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magnetochem Funct Ma, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional; Double network; Wearable sensors; Antibacterial; CALCIUM; SORPTION; BINDING;
D O I
10.1016/j.ijbiomac.2024.138813
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conductive hydrogels based on sodium alginate (SA) have potential applications in human activity monitoring and personal medical diagnosis due to their good conductivity and flexibility. However, most sensing SAhydrogels exhibit poor mechanical properties and lack of self-healing, self-adhesive, and antibacterial properties, greatly limiting their practical applications. Therefore, in this paper, a multifunctional double-network PAASA hydrogel consisting of poly(acrylic acid) (PAA) and sodium alginate (SA) was prepared by a simple strategy. As a rigid network structure, SA endowed the hydrogel double network structure with excellent mechanical performance. As a wearable sensor, the PAA-SA hydrogel exhibited excellent tensile properties (strain: 1799.2 %), self-healing, high sensitivity (GF = 9.9), reliable repeatability, self-adhesive, 3D printability and antibacterial activity. Additionally, the highly sensitive wearing sensing PAA-SA hydrogel could accurately and real-time monitor various intense or subtle human movements, such as joint bending, face and throat vibration. Moreover, PAA-SA hydrogels were not only used for handwritten recognition of Arabic numerals and English letters, but also for real-time sensing of temperature changes and monitoring of human sweating. The prepared multifunctional wearable sensing hydrogel has the advantages of simple and versatile methods and low cost, making it a promising candidate for applications in different fields such as electronic skin, soft robotics, and medical monitoring.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Stretchable, self-adhesive, and sensitive polyacrylamide-polyvinyl alcohol double network hydrogels for flexible wearable sensors
    Liu, Peng
    Li, Feihong
    Gu, Yaxin
    Li, Xiangyu
    Yu, Yunwu
    Chen, Changxiu
    Zhang, Hanzhi
    Li, Yuanhang
    Mao, Junpeng
    Gong, Haiyang
    Shan, Xiantong
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [42] Preparation of printable double-network hydrogels with rapid self-healing and high elasticity based on hyaluronic acid for controlled drug release
    Qiao, Yang
    Xu, Shichao
    Zhu, Tianzhe
    Tang, Nan
    Bai, Xuejian
    Zheng, Chunming
    POLYMER, 2020, 186
  • [43] Biocompatible and 3D-printable conductive hydrogels driven by sodium carboxymethyl cellulose for wearable strain sensors
    Jiang, Wenyan
    Ma, Yue
    Wang, Qiang
    Zhu, Tong
    Gao, Yiyan
    Gao, Guanghui
    Yan, Lei
    Kexin, Chen
    POLYMER, 2024, 295
  • [44] Biomimetic Construction of Adhesive, Self-Healing and Antifatigue Hydrogels via Galactomannan-Induced Double-Network Cross-Linking for Flexible Strain Sensors
    Tan, Yang
    Yan, Mengxing
    Dong, Hanqi
    Wang, Chao
    Shao, Lupeng
    Xiao, Xiao
    Li, Weixing
    Ji, Zhe
    Ling, Zhe
    ACS APPLIED POLYMER MATERIALS, 2025, 7 (04): : 2517 - 2528
  • [45] Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors (vol 199, 112482, 2023)
    Chen, Meijun
    Lei, Kun
    Guo, Pengshan
    Liu, Xin
    Zhao, Pengchao
    Han, Meng
    Cai, Bianyun
    Li, Guangda
    Li, Jinghua
    Cui, Jingqiang
    Wang, Xinling
    EUROPEAN POLYMER JOURNAL, 2024, 220
  • [46] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [47] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    CARBOHYDRATE POLYMERS, 2023, 303
  • [48] Double-network hydrogels with superior self-healing properties using starch reinforcing strategy
    Shang, Xiaoqin
    Wang, Qingling
    Li, Jinghao
    Zhang, Guojie
    Zhang, Jianguo
    Liu, Peng
    Wang, Liming
    CARBOHYDRATE POLYMERS, 2021, 257
  • [49] Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors
    Chen, Kai
    Hu, Yunping
    Wang, Feng
    Liu, Mingxiang
    Liu, Pei
    Li, Cong
    Yu, Yongsheng
    Xiao, Xiufeng
    Feng, Qian
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 645
  • [50] MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors
    Luan, Huixin
    Zhang, Dongzhi
    Xu, Zhenyuan
    Zhao, Wenhao
    Yang, Chunqing
    Chen, Xiaoya
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (19) : 7604 - 7613