UAV-Assisted Heterogeneous Multi-Server Computation Offloading With Enhanced Deep Reinforcement Learning in Vehicular Networks

被引:0
|
作者
Song, Xiaoqin [1 ,2 ]
Zhang, Wenjing [1 ]
Lei, Lei [1 ]
Zhang, Xinting [1 ]
Zhang, Lijuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Network, Minist Educ, Nanjing 210003, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2024年 / 11卷 / 06期
基金
中国国家自然科学基金;
关键词
Servers; Task analysis; Delays; TV; Autonomous aerial vehicles; Vehicle dynamics; Costs; Computation offloading; deep reinforcement learning; Internet of Vehicles; multi-access edge computing (MEC); resource allocation; RESOURCE-ALLOCATION; EDGE; ACCESS; FOG;
D O I
10.1109/TNSE.2024.3446667
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the development of intelligent transportation systems (ITS), computation-intensive and latency-sensitive applications are flourishing, posing significant challenges to resource-constrained task vehicles (TVEs). Multi-access edge computing (MEC) is recognized as a paradigm that addresses these issues by deploying hybrid servers at the edge and seamlessly integrating computing capabilities. Additionally, flexible unmanned aerial vehicles (UAVs) serve as relays to overcome the problem of non-line-of-sight (NLoS) propagation in vehicle-to-vehicle (V2V) communications. In this paper, we propose a UAV-assisted heterogeneous multi-server computation offloading (HMSCO) scheme. Specifically, our optimization objective to minimize the cost, measured by a weighted sum of delay and energy consumption, under the constraints of reliability requirements, tolerable delay, and computing resource limits, among others. Since the problem is non-convex, it is further decomposed into two sub-problems. First, a game-based binary offloading decision (BOD) is employed to determine whether to offload based on the parameters of computing tasks and networks. Then, a multi-agent enhanced dueling double deep Q-network (ED3QN) with centralized training and distributed execution is introduced to optimize server offloading decision and resource allocation. Simulation results demonstrate the good convergence and robustness of the proposed algorithm in a highly dynamic vehicular environment.
引用
收藏
页码:5323 / 5335
页数:13
相关论文
共 50 条
  • [21] Computation Offloading in Multi-UAV-Enhanced Mobile Edge Networks: A Deep Reinforcement Learning Approach
    Li, Bin
    Yu, Shiming
    Su, Jian
    Ou, Jianghong
    Fan, Dahua
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [22] Resource Allocation and Collaborative Offloading in Multi-UAV-Assisted IoV With Federated Deep Reinforcement Learning
    Chen, Zheyi
    Huang, Zhiqin
    Zhang, Junjie
    Cheng, Hongju
    Li, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4629 - 4640
  • [23] Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system
    Fatima, Nida
    Saxena, Paresh
    Giambene, Giovanni
    WIRELESS NETWORKS, 2024, 30 (09) : 7275 - 7291
  • [24] Deep Reinforcement Learning Based Computation Offloading and Trajectory Planning for Multi-UAV Cooperative Target Search
    Luo, Quyuan
    Luan, Tom H.
    Shi, Weisong
    Fan, Pingzhi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (02) : 504 - 520
  • [25] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [26] Deep Reinforcement Learning for Task Offloading and Power Allocation in UAV-Assisted MEC System
    Zhao, Nan
    Ren, Fan
    Du, Wei
    Ye, Zhiyang
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2021, 12 (04) : 32 - 51
  • [27] Asynchronous Federated Deep Reinforcement Learning-Based URLLC-Aware Computation Offloading in Space-Assisted Vehicular Networks
    Pan, Chao
    Wang, Zhao
    Liao, Haijun
    Zhou, Zhenyu
    Wang, Xiaoyan
    Tariq, Muhammad
    Al-Otaibi, Sattam
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) : 7377 - 7389
  • [28] Multi-Agent Deep Reinforcement Learning based Collaborative Computation Offloading in Vehicular Edge Networks
    Wang, Hao
    Zhou, Huan
    Zhao, Liang
    Liu, Xuxun
    Leung, Victor C. M.
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS, ICDCSW, 2023, : 151 - 156
  • [29] Computation Offloading via Multi-Agent Deep Reinforcement Learning in Aerial Hierarchical Edge Computing Systems
    Wang, Yuanyuan
    Zhang, Chi
    Ge, Taiheng
    Pan, Miao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5253 - 5266
  • [30] A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted Vehicular Computation Offloading
    Zhao, Liang
    Yang, Kaiqi
    Tan, Zhiyuan
    Li, Xianwei
    Sharma, Suraj
    Liu, Zhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3664 - 3674