Linearly multiplexed Photon Number Resolving single-photon detectors array

被引:0
作者
Limongi, Leonardo [1 ,2 ]
Martini, Francesco [3 ]
Ha Dao, Thu [4 ,5 ]
Gaggero, Alessandro [3 ]
Hasnaoui, Hamza [1 ]
Lopez-Gonzalez, Igor [1 ,2 ]
De Matteis, Fabio [3 ,4 ,5 ]
Quaranta, Alberto [1 ,6 ]
Salamon, Andrea [1 ,6 ]
Mattioli, Francesco [5 ]
Bernard, Martino [2 ]
Lobino, Mirko [1 ,6 ]
机构
[1] Univ Trento, Dept Ind Engn, Via Sommarive 9, I-38123 Trento, Italy
[2] Bruno Kessler Fdn, Ctr Sensors & Devices, Via Sommarive 18, I-38123 Trento, Italy
[3] CNR IFN, Ist Foton & Nanotecnol, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[4] Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Via Ric Sci, I-00133 Rome, Italy
[6] INFN TIFPA, Trento Inst Fundamental Phys & Applicat, Via Sommarive 14, I-38123 Trento, Italy
关键词
Photon Number Resolving Detector; Single-photon detector; Superconducting nanowire single-photon; detector; Lithium niobate-on-insulator; Niobium nitride; Photonic integrated circuit; Photonic chip; AVALANCHE PHOTODIODE; EFFICIENCY;
D O I
10.1016/j.optcom.2024.131244
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photon Number Resolving Detectors (PNRDs) are devices capable of measuring the number of photons present in an incident optical beam, enabling light sources to be measured and characterized at the quantum level. In this paper, we explore the performance and design considerations of a linearly multiplexed photon number- resolving single-photon detector array, integrated on a single mode waveguide. Our investigation focus on defining and analyzing the fidelity of such an array under various conditions and proposing practical designs for its implementation. Through theoretical analysis and numerical simulations, we show how propagation losses and dark counts may have a strong impact on the performance of the system and highlight the importance of mitigating these effects in practical implementations.
引用
收藏
页数:7
相关论文
共 42 条
  • [31] Waveguide photon-number-resolving detectors for quantum photonic integrated circuits
    Sahin, D.
    Gaggero, A.
    Zhou, Z.
    Jahanmirinejad, S.
    Mattioli, F.
    Leoni, R.
    Beetz, J.
    Lermer, M.
    Kamp, M.
    Hoefling, S.
    Fiore, A.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (11)
  • [32] Ultimate low system dark-count rate for superconducting nanowire single-photon detector
    Shibata, Hiroyuki
    Shimizu, Kaoru
    Takesue, Hiroki
    Tokura, Yasuhiro
    [J]. OPTICS LETTERS, 2015, 40 (14) : 3428 - 3431
  • [33] High-efficiency photon-number-resolving detector for improving heralded single-photon sources
    Stasi, Lorenzo
    Caspar, Patrik
    Brydges, Tiff
    Zbinden, Hugo
    Bussieres, Felix
    Thew, Rob
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [34] Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors
    von Helversen, Martin
    Boehm, Jonas
    Schmidt, Marco
    Gschrey, Manuel
    Schulze, Jan-Hindrik
    Strittmatter, Andre
    Rodt, Sven
    Beyer, Joern
    Heindel, Tobias
    Reitzenstein, Stephan
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (03)
  • [35] High-efficiency photon-number detection for quantum in-formation processing
    Waks, E
    Inoue, K
    Oliver, WD
    Diamanti, E
    Yamamoto, Y
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (06) : 1502 - 1511
  • [36] Quantum imaging with a photon counting camera
    Wolley, Osian
    Gregory, Thomas
    Beer, Sebastian
    Higuchi, Takafumi
    Padgett, Miles
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] Quantum enhancement of sensitivity achieved by photon-number-resolving detection in the dark port of a two-path interferometer operating at high intensities
    Wu, Jun-Yi
    Toda, Norifumi
    Hofmann, Holger F.
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [38] Secure quantum key distribution with realistic devices
    Xu, Feihu
    Ma, Xiongfeng
    Zhang, Qiang
    Lo, Hoi-Kwong
    Pan, Jian-Wei
    [J]. REVIEWS OF MODERN PHYSICS, 2020, 92 (02)
  • [39] Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses
    Zambra, G
    Bondani, M
    Spinelli, AS
    Paleari, F
    Andreoni, A
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (08) : 2762 - 2765
  • [40] Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate
    Zelmon, DE
    Small, DL
    Jundt, D
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (12) : 3319 - 3322