IMI2S: A lightweight framework for distributed computing

被引:4
作者
机构
[1] Institut des Systmes Intelligents et de Robotique, Universit Pierre et Marie Curie, Pyramide, T55/65, CC 173, 4 Place Jussieu, Paris
来源
Anzalone, Salvatore M. | 1600年 / Springer Verlag卷 / 8810期
关键词
Distributed computing; Multimodal perception; Robotics framework; Sensor networks; Social signal processing; Software frameworks;
D O I
10.1007/978-3-319-11900-7_23
中图分类号
学科分类号
摘要
An increasing number of applications require the integration of heterogeneous hardware and software components. Due to the high levels of complexity that such integrations demand, several solution have been proposed in the state of art of software engineering. This paper introduces the IMI2S framework: a distributed computing software platform aimed to cope with such levels of complexity by simplifying the functional decomposition of the problems through the implementation of highly decoupled, efficient and portable software. We will present the design issues addressed in the development of the IMI2S framework. We will show through two case studies its flexibility and its general efficacy. © 2014 Springer International Publishing Switzerland.
引用
收藏
页码:267 / 278
页数:11
相关论文
共 50 条
  • [31] The Network As a Computer: A Framework for Distributed Computing Over IoT Mesh Networks
    Di Pascale, Emanuele
    Macaluso, Irene
    Nag, Avishek
    Kelly, Mark
    Doyle, Linda
    IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (03): : 2107 - 2119
  • [32] Framework for Task Scheduling in Heterogeneous Distributed Computing Using Genetic Algorithms
    Andrew J. Page
    Thomas J. Naughton
    Artificial Intelligence Review, 2005, 24 : 415 - 429
  • [33] A Cross-Layer Optimization Framework for Distributed Computing in IoT Networks
    Shang, Bodong
    Liu, Shiya
    Lu, Sidi
    Yi, Yang
    Shi, Weisong
    Liu, Lingjia
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 440 - 444
  • [34] The Lilith framework for the rapid development of secure scalable tools for distributed computing
    Evensky, DA
    Gentile, AC
    Wyckoff, P
    Armstrong, RC
    DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II, 1999, 15 : 163 - 168
  • [35] Framework for task scheduling in heterogeneous distributed computing using genetic algorithms
    Page, AJ
    Naughton, T
    ARTIFICIAL INTELLIGENCE REVIEW, 2005, 24 (3-4) : 415 - 429
  • [36] GPU Cache System for COMPSs: A Task-Based Distributed Computing Framework
    Catalin Tatu, Cristian
    Conejero, Javier
    Vazquez-Novoa, Fernando
    Badia, Rosa M.
    EURO-PAR 2024: PARALLEL PROCESSING, PT III, EURO-PAR 2024, 2024, 14803 : 225 - 239
  • [37] A novel hierarchical distributed vehicular edge computing framework for supporting intelligent driving
    Yang, Kun
    Sun, Peng
    Yang, Dingkang
    Lin, Jieyu
    Boukerche, Azzedine
    Song, Liang
    AD HOC NETWORKS, 2024, 153
  • [38] Hydrology@Home: a distributed volunteer computing framework for hydrological research and applications
    Agliamzanov, Ramil
    Sit, Muhammed
    Demir, Ibrahim
    JOURNAL OF HYDROINFORMATICS, 2020, 22 (02) : 235 - 248
  • [39] An XML-based virtual machine for distributed computing in a Fork/Join framework
    Cutuli, G
    Mumolo, E
    Tessarotto, M
    ITI 2002: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2002, : 471 - 477
  • [40] DataLab as a Service: Distributed Computing Framework for Multi-Interactive Analysis Environments
    Hoz, Aida Palacio
    Heredia Canales, Andres
    Cimadevilla Alvarez, Ezequiel
    Obregon Ruiz, Marta
    Lopez Garcia, Alvaro
    IEEE ACCESS, 2025, 13 : 22566 - 22577