Left Ventricle Cavity Segmentation from Cardiac Cine MRI

被引:0
|
作者
Hadhoud, Marwa M. A. [1 ]
Eladawy, Mohamed I. [2 ]
Farag, Ahmed [1 ]
机构
[1] Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
[2] Department of Communication and Electronics, Faculty of Engineering, Helwan University, Cairo, Egypt
来源
International Journal of Computer Science Issues | 2012年 / 9卷 / 2 2-2期
关键词
Eigenvalues and eigenfunctions - Image segmentation - Pixels - Principal component analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic left ventricle segmentation plays an important role in the evaluation of cardiac function. In this paper, we proposed a method for segmenting the left ventricle cavity by applying pixel classification method. In this method, we used different features (i.e. the output of median filter, the gradient magnitude, the largest eigenvalues, and the gray value), and the principal component analysis (PCA) in building the feature vectors used with the KNN classifier in the segmentation of the LV cavity. We evaluated our method by sensitivity, and specificity, and we achieved good results in the segmentation process reached to 95.61% sensitivity, and 98.9% specificity. © 2012 International Journal of Computer Science Issues.
引用
收藏
页码:398 / 402
相关论文
共 50 条
  • [1] Automatic Segmentation of the Left Ventricle Cavity from Cine MRI Images
    Hadhoud, Marwa M. A.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 126 - 129
  • [2] Left Ventricle Segmentation from Cardiac Cine MRI to Detect Cardiac Abnormalities
    Paul, R. Heldah
    Jeeva, J. B.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [3] Accurate Segmentation Framework for the Left Ventricle Wall from Cardiac Cine MRI
    Sliman, H.
    Khalifa, F.
    Elnakib, A.
    Soliman, A.
    Beache, G. M.
    Gimel'farb, G.
    Emam, A.
    Elmaghraby, A.
    El-Baz, A.
    2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 287 - 296
  • [4] Watershed segmentation of basal left ventricle for quantitation of cine cardiac MRI function
    Yingli Lu
    Kim A Connelly
    Alexander J Dick
    Graham A Wright
    Perry E Radau
    Journal of Cardiovascular Magnetic Resonance, 13 (Suppl 1)
  • [5] Integrating Atlas and Graph Cut Methods for Left Ventricle Segmentation from Cardiac Cine MRI
    Dangi, Shusil
    Cahill, Nathan
    Linte, Cristian A.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: IMAGING AND MODELLING CHALLENGES, 2016, 2017, 10124 : 76 - 86
  • [6] Segmentation of Left Ventricle in Cardiac Cine MRI: An Automatic Image-Driven Method
    Lu, YingLi
    Radau, Perry
    Connelly, Kim
    Dick, Alexander
    Wright, Graham A.
    FUNCTIONAL IMAGING AND MODELING OF THE HEART, PROCEEDINGS, 2009, 5528 : 339 - 347
  • [7] Cardiac Cine MRI Left Ventricle Segmentation Combining Deep Learning and Graphical Models
    Guo, Fumin
    Ng, Matthew
    Wright, Graham
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [8] Automatic Segmentation of Left Ventricle in Cardiac Cine MRI Images Based on Deep Learning
    Zhou, Tian
    Icke, Ilknur
    Dogdas, Belma
    Parimal, Sarayu
    Sampath, Smita
    Forbes, Joseph
    Bagchi, Ansuman
    Chin, Chih-Liang
    Chen, Antong
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [9] Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model
    Wu, Yuwei
    Wang, Yuanquan
    Jia, Yunde
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) : 990 - 1003
  • [10] Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression
    Tan, Li Kuo
    McLaughlin, Robert A.
    Lim, Einly
    Aziz, Yang Faridah Abdul
    Liew, Yih Miin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (01) : 140 - 152