Effects of magnetic anisotropy on three-qubit antiferromagnetic thermal machines

被引:3
作者
Castorene, Bastian [1 ,2 ]
Pena, Francisco J. [2 ,3 ]
Norambuena, Ariel [4 ]
Ulloa, Sergio E. [5 ,6 ]
Araya, Cristobal [2 ]
Vargas, Patricio [7 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Fis, Casilla 4059, Valparaiso 2373223, Chile
[2] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso 2390123, Chile
[3] Millennium Nucleus NanoBioPhys NNBP, Av Espana 1680, Valparaiso 2390123, Chile
[4] Univ Mayor, Ctr Multidisciplinario Fis, Camino la Piramide 5750, Huechuraba, Santiago, Chile
[5] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[6] Ohio Univ, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
[7] Univ Tecn Federico Santa Maria, Dept Fis, CEDENNA, Av Espana 1680, Valparaiso 2390123, Chile
关键词
HEAT ENGINE; QUANTUM; PERFORMANCE; SYSTEMS; WORKING; QUBITS; CYCLE;
D O I
10.1103/PhysRevE.110.044135
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study investigates the anisotropic effects on a system of three qubits with chain and ring topology, described by the antiferromagnetic Heisenberg XXX model subjected to a homogeneous magnetic field. We explore the Stirling and Otto cycles and find that easy-axis anisotropy significantly enhances engine efficiency across all cases. At low temperatures, the ring configuration outperforms the chain on both work and efficiency during the Stirling cycle. Additionally, in both topologies, the Stirling cycle achieves Carnot efficiency with finite work at quantum critical points. In contrast, the quasistatic Otto engine also reaches Carnot efficiency at these points but yields no useful work. Notably, the Stirling cycle exhibits all thermal operational regimes-engine, refrigerator, heater, and accelerator-unlike the quasistatic Otto cycle, which functions only as an engine or refrigerator.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Quantum Otto cycle with inner friction: finite-time and disorder effects [J].
Alecce, A. ;
Galve, F. ;
Lo Gullo, N. ;
Dell'Anna, L. ;
Plastina, F. ;
Zambrini, R. .
NEW JOURNAL OF PHYSICS, 2015, 17
[2]   Work extraction in the spin-boson model -: art. no. 046106 [J].
Allahverdyan, AE ;
Gracià, RS ;
Nieuwenhuizen, TM .
PHYSICAL REVIEW E, 2005, 71 (04)
[3]   General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin [J].
Altintas, Ferdi ;
Mustecaplioglu, Ozgur E. .
PHYSICAL REVIEW E, 2015, 92 (02)
[4]   Quantum correlated heat engine with spin squeezing [J].
Altintas, Ferdi ;
Hardal, Ali U. C. ;
Mustecaplioglu, Ozgur E. .
PHYSICAL REVIEW E, 2014, 90 (03)
[5]   Magnetic Stirling Cycle for Qubits with Anisotropy near the Quantum Critical Point [J].
Araya, Cristobal ;
Pena, Francisco J. ;
Norambuena, Ariel ;
Castorene, Bastian ;
Vargas, Patricio .
TECHNOLOGIES, 2023, 11 (06)
[6]   Quantum Otto heat engine based on a multiferroic chain working substance [J].
Azimi, M. ;
Chotorlishvili, L. ;
Mishra, S. K. ;
Vekua, T. ;
Huebner, W. ;
Berakdar, J. .
NEW JOURNAL OF PHYSICS, 2014, 16
[7]   Spin quantum heat engines with shortcuts to adiabaticity [J].
Cakmak, Baris ;
Mustecaplioglu, Ozgur E. .
PHYSICAL REVIEW E, 2019, 99 (03)
[8]   Benchmarking quantum Stirling and Otto cycles for an interacting spin system [J].
Cakmak, Selcuk .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (04) :1209-1215
[9]   Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon [J].
Chan, Kok Wai ;
Sahasrabudhe, Harshad ;
Huang, Wister ;
Wang, Yu ;
Yang, Henry C. ;
Veldhorst, Menno ;
Hwang, Jason C. C. ;
Mohiyaddin, Fahd A. ;
Hudson, Fay E. ;
Itoh, Kohei M. ;
Saraiva, Andre ;
Morello, Andrea ;
Laucht, Arne ;
Rahman, Rajib ;
Dzurak, Andrew S. .
NANO LETTERS, 2021, 21 (03) :1517-1522
[10]   The performance of a quantum heat engine working with spin systems [J].
Chen, JC ;
Lin, BH ;
Hua, B .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (16) :2051-2057