A Levenberg-Marquardt type algorithm with a Broyden-like update technique for solving nonlinear equations

被引:0
作者
Tang, Jingyong [1 ]
Zhou, Jinchuan [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Shandong Univ Technol, Coll Math & Stat, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear equations; Broyden-like update; Levenberg-Marquardt method; Quadratic convergence; CONVERGENCE;
D O I
10.1016/j.cam.2024.116401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a variant Broyden-like method for solving nonlinear equations. At each iteration, the proposed method solves a Levenberg-Marquardt type equation in which the matrix is updated by the Broyden-like formula. The global convergence ensured by a nonmonotone derivative-free line search is proved without the nonsingularity condition. Moreover, the proposed method has local quadratic convergence under suitable conditions. Numerical experiments show that our method is more effective than the traditional Broyden-like method.
引用
收藏
页数:13
相关论文
共 26 条
[1]   An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz ;
Caristi, Giuseppe .
OPTIMIZATION, 2018, 67 (05) :637-650
[2]   On the resolution of the generalized nonlinear complementarity problem [J].
Andreani, R ;
Friedlander, A ;
Santos, SA .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) :303-321
[3]  
[Anonymous], 2001, Top. Numer. Anal.
[4]   A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0-function [J].
Chen, Bilian ;
Ma, Changfeng .
JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (03) :473-495
[5]   Superlinear/quadratic smoothing Broyden-like method for the generalized nonlinear complementarity problem [J].
Chen, Bilian ;
Ma, Changfeng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) :1250-1263
[6]   A smoothing Broyden-like method with a nonmonotone derivative-free line search for nonlinear complementarity problems [J].
Fan, Bin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :641-655
[7]   A note on the Levenberg-Marquardt parameter [J].
Fan, Jinyan ;
Pan, Jianyu .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :351-359
[8]   Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition [J].
Fan, JY ;
Pan, JY .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (01) :47-62
[9]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[10]   A smoothing Levenberg-Marquardt algorithm for semi-infinite programming [J].
Jin, Ping ;
Ling, Chen ;
Shen, Huifei .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) :675-695