Fuzzy sliding mode control based-fast finite-time projective synchronization for fractional-order chaotic systems

被引:0
作者
Boulkroune, Abdesselem [1 ]
Bouzeriba, Amel [1 ]
Boubellouta, Amina [1 ]
机构
[1] Univ Jijel, LAJ Lab, BP 98, Ouled Aissa 18000, Jijel, Algeria
来源
ARCHIVES OF CONTROL SCIENCES | 2024年 / 34卷 / 03期
关键词
finite-time projective synchronization; chaotic systems with fractional-orders; fuzzy systems; sliding mode control; NONLINEAR-SYSTEMS; ADAPTIVE-CONTROL; NEURAL-NETWORKS; STABILIZATION; OBSERVER; DESIGN;
D O I
10.24425/acs.2024.149668
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study explores the challenge of achieving a fast finite-time projective synchronization (FFTPS) in chaotic systems characterized by incommensurate fractional orders, unknown master-slave models, and uncertain external disturbances. Utilizing the principles of Lyapunov stability theory, two fuzzy sliding mode control (FSMC) schemes are proposed. Accordingly, two novel non-singular finite-time sliding surfaces are constructed. Fuzzy logic systems are utilized to provide an approximation of the continuous uncertain dynamics within the master-slave system. The sufficient conditions for both controllers are derived to ensure this robust FFTPS. Finally, the proposed controllers are validated through numerical simulations on two projective synchronization examples of fractional-order chaotic systems, demonstrating their feasibility.
引用
收藏
页码:473 / 500
页数:28
相关论文
共 60 条
[31]   Two methods for terminal sliding-mode synchronization of fractional-order nonlinear chaotic systems [J].
Mao, Beixing .
ASIAN JOURNAL OF CONTROL, 2021, 23 (04) :1720-1727
[32]   Second-order sliding mode control for nonlinear fractional-order systems [J].
Mathiyalagan, Kalidass ;
Sangeetha, G. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 383
[33]   Finite-Time Projective Synchronization Control of Variable-Order Fractional Chaotic Systems via Sliding Mode Approach [J].
Meng, Xin ;
Wu, Zhengtian ;
Gao, Cunchen ;
Jiang, Baoping ;
Karimi, Hamid Reza .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (07) :2503-2507
[34]   Chameleon Chaotic Systems With Quadratic Nonlinearities: An Adaptive Finite-Time Sliding Mode Control Approach and Circuit Simulation [J].
Mobayen, Saleh ;
Fekih, Afef ;
Vaidyanathan, Sundarapandian ;
Sambas, Aceng .
IEEE ACCESS, 2021, 9 :64558-64573
[35]   A Disturbance-Observer-Based Sliding Mode Control for the Robust Synchronization of Uncertain Delayed Chaotic Systems: Application to Data Security [J].
Mofid, Omid ;
Momeni, Mahdi ;
Mobayen, Saleh ;
Fekih, Afef .
IEEE ACCESS, 2021, 9 :16546-16555
[36]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[37]  
Podlubny I, 1999, FRACTIONAL DIFFERENT, DOI DOI 10.12691/AJMA-1-1-3
[38]   Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays [J].
Rajivganthi, C. ;
Rihan, F. A. ;
Lakshmanan, S. ;
Muthukumar, P. .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (12) :1309-1320
[39]  
Rashidnejad Z., 2020, CHAOS SOLITON FRACT, V5, P100042
[40]  
RAZZAGHIAN A., 2022, International Journal of Industrial Electronics Control and Optimization, V5, P77, DOI [10.22111/ieco.2022.38930.1364, DOI 10.22111/IECO.2022.38930.1364]