Fuzzy sliding mode control based-fast finite-time projective synchronization for fractional-order chaotic systems

被引:0
作者
Boulkroune, Abdesselem [1 ]
Bouzeriba, Amel [1 ]
Boubellouta, Amina [1 ]
机构
[1] Univ Jijel, LAJ Lab, BP 98, Ouled Aissa 18000, Jijel, Algeria
来源
ARCHIVES OF CONTROL SCIENCES | 2024年 / 34卷 / 03期
关键词
finite-time projective synchronization; chaotic systems with fractional-orders; fuzzy systems; sliding mode control; NONLINEAR-SYSTEMS; ADAPTIVE-CONTROL; NEURAL-NETWORKS; STABILIZATION; OBSERVER; DESIGN;
D O I
10.24425/acs.2024.149668
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study explores the challenge of achieving a fast finite-time projective synchronization (FFTPS) in chaotic systems characterized by incommensurate fractional orders, unknown master-slave models, and uncertain external disturbances. Utilizing the principles of Lyapunov stability theory, two fuzzy sliding mode control (FSMC) schemes are proposed. Accordingly, two novel non-singular finite-time sliding surfaces are constructed. Fuzzy logic systems are utilized to provide an approximation of the continuous uncertain dynamics within the master-slave system. The sufficient conditions for both controllers are derived to ensure this robust FFTPS. Finally, the proposed controllers are validated through numerical simulations on two projective synchronization examples of fractional-order chaotic systems, demonstrating their feasibility.
引用
收藏
页码:473 / 500
页数:28
相关论文
共 60 条
[1]   Synchronization and stabilization of fractional second-order nonlinear complex systems [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2015, 80 (04) :1731-1744
[2]   Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :247-261
[3]   Super-Twisting Algorithm-Based Sliding-Mode Observer for Synchronization of Nonlinear Incommensurate Fractional-Order Chaotic Systems Subject to Unknown Inputs [J].
Al-Saggaf, Ubaid Muhsen ;
Bettayeb, Maamar ;
Djennoune, Said .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (07) :3065-3075
[4]   A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network [J].
Alsaade, Fawaz W. ;
Al-zahrani, Mohammed S. ;
Yao, Qijia ;
Jahanshahi, Hadi .
FRACTAL AND FRACTIONAL, 2023, 7 (05)
[5]   Adaptive synchronization of chaotic systems with hysteresis quantizer input [J].
Asadollahi, Mostafa ;
Ghiasi, Amir Rikhtehgar ;
Badamchizadeh, Mohammad Ali .
ISA TRANSACTIONS, 2020, 98 :137-148
[6]   Synchronization of incommensurate non-identical fractional order chaotic systems using active control [J].
Bhalekar, S. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (08) :1495-1508
[7]   Intelligent fractional-order control-based projective synchronization for chaotic optical systems [J].
Boubellouta, A. ;
Boulkroune, A. .
SOFT COMPUTING, 2019, 23 (14) :5367-5384
[8]   Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities [J].
Boubellouta, A. ;
Zouari, F. ;
Boulkroune, A. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2019, 48 (03) :211-234
[9]   How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems [J].
Boulkroune, A. ;
Tadjine, M. ;
M'Saad, M. ;
Farza, M. .
FUZZY SETS AND SYSTEMS, 2008, 159 (08) :926-948
[10]   A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems [J].
Boulkroune, A. ;
Bouzeriba, A. ;
Hamel, S. ;
Bouden, T. .
NONLINEAR DYNAMICS, 2014, 78 (01) :433-447