Mechanical Properties of Subgrade Soil Reinforced with Basalt Fiber and Cement under Freeze-Thaw Cycles

被引:3
作者
Niu, Weiwei [1 ,2 ]
Liu, Jiankun [1 ]
Kravchenko, Ekaterina [3 ]
Zheng, Yuanyuan [1 ]
Tai, Bowen [4 ]
Wei, Pengchang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Guangdong, Peoples R China
[2] Shenyang Inst Technol, Sch Energy & Water Conservancy, Shenyang 113122, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Clear Water Bay, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cold region; Fiber-reinforced cemented soil; Static/dynamic triaxial compression test; Shear strength; COMPRESSIVE STRENGTH; ASH GEOPOLYMER; MICROSTRUCTURE; CLAY;
D O I
10.1061/JMCEE7.MTENG-17161
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The stability of soil is an essential requirement for various geotechnical engineering projects. The application of composite materials made from cemented soil has become prevalent in road subgrade engineering and foundation treatment due to their affordability, quick construction, and ability to withstand high compression forces. However, the mechanism about the incorporating fibers into cemented soil to enhance strength characteristics, mitigate the formation of microcracks in the soil matrix, and increase frost resistance is still unclear. In this study, a composite improvement method of adding basalt fiber (BF) to cemented soil is proposed, which is to select a single subgrade filling material with most significant freeze-thaw (FT) durability on the basis of traditional cement improvement methods. A series of static/dynamic triaxial compression tests were performed with cemented soil samples reinforced by three BF contents (0, 0.25%, 0.50%, and 0.75%) after FT cycles. The physical properties of these samples were studied, such as the optimal ratio of fiber content, the stress-strain relationship, failure strength, shear strength, and shear modulus, among others. The results revealed that both the shear modulus and failure strength of cemented subgrade soil reinforced with BF showed a significant increase. Compared with cemented soil, fiber-cemented soil exhibited a lower reduction rate in its mechanical properties after 15 FT cycles. The cohesion of the reinforced soil exhibited a gradual decrease as the number of FT cycles increased. Conversely, the friction angle initially decreased but later exhibited an increase. Compared with the reinforcement effects of BF at 0.25% and 0.75%, fiber-reinforced cemented soil with BF content of 0.5% demonstrated the highest strength and performed well in minimizing the effect of FT cycles. It is therefore recommended that ratio of 6% cement and 0.5% BF should be used to enhance the integrity of subgrade filling materials on silty clay.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Experimental Study of Mechanical Properties of PVA-ECC under Freeze-Thaw Cycles
    Ge, WenJie
    Cai, Chen
    Ji, Xiang
    Ashour, Ashraf F.
    Cao, DaFu
    [J]. JOURNAL OF TESTING AND EVALUATION, 2018, 46 (06) : 2330 - 2338
  • [42] The influence of freeze-thaw cycles on the mechanical properties of paleosols: based on a multiscale research
    Yiqian, Chen
    Peiran, Zhang
    Yang, Bai
    Zihao, Zhou
    Yongxin, Che
    Huimin, Yang
    [J]. CANADIAN JOURNAL OF SOIL SCIENCE, 2022,
  • [43] Effects of freeze-thaw on bank soil mechanical properties and bank stability
    Yang, Zhen
    Mou, Xianyou
    Ji, Honglan
    Liang, Zhihao
    Zhang, Jianghao
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Micro-scale investigations on the mechanical properties of expansive soil subjected to freeze-thaw cycles
    Chen, Qimin
    Ghimire, Bibek
    Su, Libin
    Liu, Yong
    [J]. COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 219
  • [45] EFFECTS OF FREEZE-THAW CYCLES ON PROPERTIES OF SENSITIVE CLAY
    ROY, M
    BERGERON, G
    LAROCHELLE, P
    LEROUEIL, S
    KONRAD, JM
    [J]. CANADIAN GEOTECHNICAL JOURNAL, 1995, 32 (04) : 725 - 740
  • [46] An analysis of freeze-thaw cycles on geotechnical properties of soft-soil
    Meeravali, Karumanchi
    Alla, Suseela
    Syed, Habibunnisa
    Ruben, Nerella
    [J]. MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 1304 - 1309
  • [47] Effect of freeze-thaw cycles on shear strength of saline soil
    Han, Yan
    Wang, Qing
    Wang, Ning
    Wang, Jiaqi
    Zhang, Xudong
    Cheng, Shukai
    Kong, Yuanyuan
    [J]. COLD REGIONS SCIENCE AND TECHNOLOGY, 2018, 154 : 42 - 53
  • [48] Effectiveness of lime in stabilising subgrade soils subjected to freeze-thaw cycles
    Ismeik, Muhannad
    Shaqour, Fathi
    [J]. ROAD MATERIALS AND PAVEMENT DESIGN, 2020, 21 (01) : 42 - 60
  • [49] Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles
    Qiu, Kaichi
    Ding, Lin
    Yu, Wenbing
    Chen, Kezheng
    Huang, Shuai
    Gao, Kai
    [J]. ATMOSPHERE, 2022, 13 (12)
  • [50] The Influence of Freeze-Thaw Cycles and Corrosion on Reinforced Concrete and the Relationship between the Evolutions of the Microstructure and Mechanical Properties
    Zhang, Shuhua
    Tian, Bin
    Chen, Bofu
    Lu, Xiaochun
    Xiong, Bobo
    Shuang, Ning
    [J]. MATERIALS, 2022, 15 (18)