Mechanical Properties of Subgrade Soil Reinforced with Basalt Fiber and Cement under Freeze-Thaw Cycles

被引:3
作者
Niu, Weiwei [1 ,2 ]
Liu, Jiankun [1 ]
Kravchenko, Ekaterina [3 ]
Zheng, Yuanyuan [1 ]
Tai, Bowen [4 ]
Wei, Pengchang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Guangdong, Peoples R China
[2] Shenyang Inst Technol, Sch Energy & Water Conservancy, Shenyang 113122, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Clear Water Bay, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cold region; Fiber-reinforced cemented soil; Static/dynamic triaxial compression test; Shear strength; COMPRESSIVE STRENGTH; ASH GEOPOLYMER; MICROSTRUCTURE; CLAY;
D O I
10.1061/JMCEE7.MTENG-17161
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The stability of soil is an essential requirement for various geotechnical engineering projects. The application of composite materials made from cemented soil has become prevalent in road subgrade engineering and foundation treatment due to their affordability, quick construction, and ability to withstand high compression forces. However, the mechanism about the incorporating fibers into cemented soil to enhance strength characteristics, mitigate the formation of microcracks in the soil matrix, and increase frost resistance is still unclear. In this study, a composite improvement method of adding basalt fiber (BF) to cemented soil is proposed, which is to select a single subgrade filling material with most significant freeze-thaw (FT) durability on the basis of traditional cement improvement methods. A series of static/dynamic triaxial compression tests were performed with cemented soil samples reinforced by three BF contents (0, 0.25%, 0.50%, and 0.75%) after FT cycles. The physical properties of these samples were studied, such as the optimal ratio of fiber content, the stress-strain relationship, failure strength, shear strength, and shear modulus, among others. The results revealed that both the shear modulus and failure strength of cemented subgrade soil reinforced with BF showed a significant increase. Compared with cemented soil, fiber-cemented soil exhibited a lower reduction rate in its mechanical properties after 15 FT cycles. The cohesion of the reinforced soil exhibited a gradual decrease as the number of FT cycles increased. Conversely, the friction angle initially decreased but later exhibited an increase. Compared with the reinforcement effects of BF at 0.25% and 0.75%, fiber-reinforced cemented soil with BF content of 0.5% demonstrated the highest strength and performed well in minimizing the effect of FT cycles. It is therefore recommended that ratio of 6% cement and 0.5% BF should be used to enhance the integrity of subgrade filling materials on silty clay.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Evolution of mechanical behaviours of an expansive soil during drying-wetting, freeze-thaw, and drying-wetting-freeze-thaw cycles
    Zhao, Gui-tao
    Han, Zhong
    Zou, Wei-lie
    Wang, Xie-qun
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2021, 80 (10) : 8109 - 8121
  • [32] Mechanism of Strength Degradation of Fiber-Reinforced Soil Under Freeze-Thaw Conditions
    Yu, Xiaojuan
    Wu, Xingyu
    Zhu, Peng
    Liu, Chao
    Qiu, Chengchun
    Cai, Zhongbing
    BUILDINGS, 2025, 15 (06)
  • [33] Mechanical performance of steel fiber reinforced concrete under the action of freeze-thaw circulation
    Xie, Xiaopeng
    Gao, Danying
    ISISS 2005: Innovation & Sustainability of Structures, Vol 1-3, 2005, : 2242 - 2249
  • [34] Application of tire crumbs on mechanical properties of a clayey soil subjected to freeze-thaw cycles
    Roustaei, M.
    Ghazavi, M.
    Aliaghaei, E.
    SCIENTIA IRANICA, 2016, 23 (01) : 122 - 132
  • [35] Experimental Investigation on the Dynamic Mechanical Properties and Microstructure Deterioration of Steel Fiber Reinforced Concrete Subjected to Freeze-Thaw Cycles
    Li, Yang
    Zhang, Qirui
    Wang, Ruijun
    Xiong, Xiaobin
    Li, Yan
    Wang, Jiayu
    BUILDINGS, 2022, 12 (12)
  • [36] Influence of freeze-thaw cycles on mechanical properties of a silty sand
    Liu, Jiankun
    Chang, Dan
    Yu, Qianmi
    ENGINEERING GEOLOGY, 2016, 210 : 23 - 32
  • [37] The coupling effects of wet-dry and freeze-thaw cycles on the mechanical properties of saline soil synergistically solidified with sulfur-free lignin, basalt fiber and hydrophobic polymer
    Shu, Hang
    Yu, Qingbo
    Niu, Cencen
    Sun, Di
    Wang, Qing
    CATENA, 2024, 238
  • [38] Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze-thaw cycles
    Xia, Weitong
    Wang, Qing
    Yu, Qingbo
    Yao, Meng
    Sun, Di
    Liu, Jing
    Wang, Zhou
    ACTA GEOTECHNICA, 2023, 18 (07) : 3623 - 3642
  • [39] An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles
    Wang, Tian-liang
    Liu, Yao-jun
    Yan, Han
    Xu, Lei
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2015, 112 : 51 - 65
  • [40] Study of the Mechanical and Microscopic Properties of Modified Silty Clay under Freeze-Thaw Cycles
    Zhou Wenjun
    Wang Qingzhi
    Fang Jianhong
    Wang Kejin
    Zhao Xiangqing
    GEOFLUIDS, 2022, 2022