Mechanical Properties of Subgrade Soil Reinforced with Basalt Fiber and Cement under Freeze-Thaw Cycles

被引:3
|
作者
Niu, Weiwei [1 ,2 ]
Liu, Jiankun [1 ]
Kravchenko, Ekaterina [3 ]
Zheng, Yuanyuan [1 ]
Tai, Bowen [4 ]
Wei, Pengchang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Guangdong, Peoples R China
[2] Shenyang Inst Technol, Sch Energy & Water Conservancy, Shenyang 113122, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Clear Water Bay, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cold region; Fiber-reinforced cemented soil; Static/dynamic triaxial compression test; Shear strength; COMPRESSIVE STRENGTH; ASH GEOPOLYMER; MICROSTRUCTURE; CLAY;
D O I
10.1061/JMCEE7.MTENG-17161
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The stability of soil is an essential requirement for various geotechnical engineering projects. The application of composite materials made from cemented soil has become prevalent in road subgrade engineering and foundation treatment due to their affordability, quick construction, and ability to withstand high compression forces. However, the mechanism about the incorporating fibers into cemented soil to enhance strength characteristics, mitigate the formation of microcracks in the soil matrix, and increase frost resistance is still unclear. In this study, a composite improvement method of adding basalt fiber (BF) to cemented soil is proposed, which is to select a single subgrade filling material with most significant freeze-thaw (FT) durability on the basis of traditional cement improvement methods. A series of static/dynamic triaxial compression tests were performed with cemented soil samples reinforced by three BF contents (0, 0.25%, 0.50%, and 0.75%) after FT cycles. The physical properties of these samples were studied, such as the optimal ratio of fiber content, the stress-strain relationship, failure strength, shear strength, and shear modulus, among others. The results revealed that both the shear modulus and failure strength of cemented subgrade soil reinforced with BF showed a significant increase. Compared with cemented soil, fiber-cemented soil exhibited a lower reduction rate in its mechanical properties after 15 FT cycles. The cohesion of the reinforced soil exhibited a gradual decrease as the number of FT cycles increased. Conversely, the friction angle initially decreased but later exhibited an increase. Compared with the reinforcement effects of BF at 0.25% and 0.75%, fiber-reinforced cemented soil with BF content of 0.5% demonstrated the highest strength and performed well in minimizing the effect of FT cycles. It is therefore recommended that ratio of 6% cement and 0.5% BF should be used to enhance the integrity of subgrade filling materials on silty clay.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of freeze-thaw cycles on static properties of cement stabilised subgrade silty soil
    Liu, Han-bing
    Sun, Shuang
    Wei, Hai-bin
    Li, Wen-jun
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (11) : 3770 - 3782
  • [2] Microscopic Mechanism of the Macroscopic Mechanical Properties of Cement Modified Subgrade Silty Soil Subjected to Freeze-Thaw Cycles
    Liu, Hanbing
    Sun, Shuang
    Wang, Lixia
    Zhang, Yunlong
    Wang, Jing
    Luo, Guobao
    Han, Leilei
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [3] Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles
    Wang, Dan
    Liu, En-long
    Yang, Cheng-song
    Liu, You-qian
    Zhu, Sheng-xian
    Yu, Qi-hao
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (01) : 242 - 255
  • [4] Static and Dynamic Behaviors of Basalt Fiber Reinforced Cement-Soil after Freeze-Thaw Cycle
    Gao, Changhui
    Du, Guangyin
    Guo, Qian
    Zhuang, Zhongxun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2020, 24 (12) : 3573 - 3583
  • [5] Experimental Study on Mechanical Properties of Basalt Fiber Concrete after Cryogenic Freeze-Thaw Cycles
    Li, Yang
    Gu, Zhicong
    Zhao, Ben
    Zhang, Jiangkun
    Zou, Xu
    POLYMERS, 2023, 15 (01)
  • [6] Effects of Freeze-Thaw Cycles on the Mechanical Properties and Microstructure of a Dispersed Soil
    Zhang, Shurui
    Xu, Xin
    Dong, Xiaoqiang
    Lei, Haomin
    Sun, Xun
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [7] Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze-Thaw Cycles
    Wang, Rongchang
    Yang, Zhongnian
    Ling, Xianzhang
    Shi, Wei
    Sun, Zhenxing
    Qin, Xipeng
    MATERIALS, 2024, 17 (20)
  • [8] Freeze-Thaw Durability of Cement-Stabilized Soil Reinforced with Polypropylene/Basalt Fibers
    Sahlabadi, Seyed Hadi
    Bayat, Meysam
    Mousivand, Mohsen
    Saadat, Mohsen
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (09)
  • [9] The impact of raspberry fiber and xanthan gum in improving the mechanical properties and freeze-thaw durability of bentonite soil subgrade
    Mansourkiaei, Yasaman
    Fateh, Sahand
    Shalchian, Mohammad Mahdi
    Arabani, Mahyar
    Payan, Meghdad
    Ranjbar, Payam Zanganeh
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [10] Effect of Freeze-Thaw Cycles on Mechanical and Microstructural Properties of Tailings Reinforced with Cement-Based Material
    Ding, Pengchu
    Hou, Yunbing
    Han, Dong
    Zhang, Xing
    Cao, Shuxiong
    Li, Chunqing
    MINERALS, 2022, 12 (04)