Convolutional neural network for intrusion detection using blockchain technology

被引:2
作者
Aljabri A. [1 ]
Jemili F. [1 ]
Korbaa O. [1 ]
机构
[1] MARS Research Laboratory LR17ES05, Universite de Sousse, ISITCom, Hammam Sousse
关键词
Blockchain-based intrusion detection; convolutional neural networks; cyber-physical security; deep learning; feature selection; intrusion resilience;
D O I
10.1080/1206212X.2023.2284443
中图分类号
学科分类号
摘要
Cyber-physical systems (CPS) are becoming increasingly ubiquitous, connecting the physical world with the cyber realm. This convergence has exposed CPS to a growing threat landscape, necessitating robust intrusion detection systems (IDS) to safeguard critical infrastructure. Deep learning (DL) has emerged as a powerful tool for IDS, and convolutional neural networks (CNNs) have demonstrated exceptional performance in this domain. However, traditional IDS models are susceptible to data tampering and manipulation, compromising their integrity and effectiveness. Blockchain technology, with its inherent immutability and tamper-proof nature, offers a promising solution to enhance the security and reliability of IDS models. In this study, we propose a CNN-based IDS model that leverages blockchain technology to secure network traffic data. Our hypothesis is that integrating blockchain with CNNs can significantly improve the security and robustness of IDS models against data tampering and manipulation. To test our hypothesis, we employ a greedy-based genetic algorithm to select the most relevant features from network traffic data, followed by training a CNN model using the selected features. Finally, we evaluate the trained CNN model on a real-world dataset, demonstrating its ability to accurately classify network traffic as normal or intrusive. The results of our evaluation reveal that the proposed CNN-based IDS model achieves a classification accuracy of 99.2%, surpassing traditional IDS models. Moreover, our model exhibits enhanced resilience against data tampering and manipulation, demonstrating the effectiveness of blockchain integration in safeguarding the integrity of IDS models. Our findings underscore the potential of blockchain-enhanced CNNs as a robust and secure solution for intrusion detection in CPS, ensuring the integrity and protection of critical infrastructure. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:67 / 77
页数:10
相关论文
共 50 条
  • [31] Network Intrusion Detection Using Genetic Algorithm and Neural Network
    Gomathy, A.
    Lakshmipathi, B.
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 399 - 408
  • [32] AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK
    Al-Taani, Ahmad T.
    Al-Dagamseh, Ishraq T.
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2023, 9 (02): : 118 - 136
  • [33] Convolutional Neural Network for Drowsiness Detection Using EEG Signals
    Chaabene, Siwar
    Bouaziz, Bassem
    Boudaya, Amal
    Hoekelmann, Anita
    Ammar, Achraf
    Chaari, Lotfi
    SENSORS, 2021, 21 (05) : 1 - 19
  • [34] Edge Detection Using Convolutional Neural Network
    Wang, Ruohui
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 12 - 20
  • [35] Low-Latency Intrusion Detection Using a Deep Neural Network
    Bin Ahmad, Umair
    Akram, Muhammad Arslan
    Mian, Adnan Noor
    IT PROFESSIONAL, 2022, 24 (03) : 67 - 72
  • [36] Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
    Mendonca, Robson V.
    Teodoro, Arthur A. M.
    Rosa, Renata L.
    Saadi, Muhammad
    Melgarejo, Dick Carrillo
    Nardelli, Pedro H. J.
    Rodriguez, Demostenes Z.
    IEEE ACCESS, 2021, 9 : 61024 - 61034
  • [37] Arrhythmia detection using deep convolutional neural network with long duration ECG signals
    Yildirim, Ozal
    Plawiak, Pawel
    Tan, Ru-San
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 102 : 411 - 420
  • [38] Privacy-Preserving Intrusion Detection using Convolutional Neural Networks
    Kodys, Martin
    Dai, Zhongmin
    Thing, Vrizlynn L. L.
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1148 - 1153
  • [39] Vehicular-Network-Intrusion Detection Based on a Mosaic-Coded Convolutional Neural Network
    Hu, Rong
    Wu, Zhongying
    Xu, Yong
    Lai, Taotao
    MATHEMATICS, 2022, 10 (12)
  • [40] HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System
    Khan, Muhammad Ashfaq
    PROCESSES, 2021, 9 (05)