Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets

被引:5
|
作者
Bennett, Daniel [1 ]
Martinez-Carracedo, Gabriel [2 ,3 ]
He, Xu [4 ]
Ferrer, Jaime [2 ,3 ]
Ghosez, Philippe [4 ]
Comin, Riccardo [5 ]
Kaxiras, Efthimios [1 ,6 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Oviedo, Dept Fis, Oviedo 33007, Spain
[3] Univ Oviedo, Ctr Invest Nanomat & Nanotecnol, CSIC, El Entrego 33940, Spain
[4] Univ Liege, Theoret Mat Phys, Q MAT, B-4000 Sart Tilman Par Liege, Belgium
[5] MIT, Dept Phys, Cambridge, MA USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
FERROMAGNETISM; EXCHANGE; BILAYER; LIMIT;
D O I
10.1103/PhysRevLett.133.246703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling. We illustrate this concept using first-principles calculations in bilayer NiI2, which can be made ferroelectric upon rotating two adjacent layers by 180 degrees with respect to the bulk stacking. Furthermore, we discover a novel strong magnetoelectric coupling between the interlayer spin order and interfacial electronic polarization. Our approach is not only general but also systematic and can enable the discovery of a wide variety of 2D multiferroics with strong magnetoelectric coupling.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials
    Gogoi, Liyenda
    Gao, Weibo
    Ajayan, Pulickel M.
    Deb, Pritam
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (03) : 1430 - 1456
  • [22] van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics
    Yang, Shengxue
    Zhang, Tianle
    Jiang, Chengbao
    ADVANCED SCIENCE, 2021, 8 (02)
  • [23] Unconventional Pressure-Driven Metamagnetic Transitions in Topological van der Waals Magnets
    Qian, Tiema
    Emmanouilidou, Eve
    Hu, Chaowei
    Green, Jazmine C.
    Mazin, Igor I.
    Ni, Ni
    NANO LETTERS, 2022, 22 (13) : 5523 - 5529
  • [24] Electric-field switching of two-dimensional van der Waals magnets
    Jiang, Shengwei
    Shan, Jie
    Mak, Kin Fai
    NATURE MATERIALS, 2018, 17 (05) : 406 - +
  • [25] All-optical control and ultrafast spin dynamics in van der Waals magnets
    Dabrowski, Maciej
    2024 IEEE INTERNATIONAL MAGNETIC CONFERENCE-SHORT PAPERS, INTERMAG SHORT PAPERS, 2024,
  • [26] Creation and manipulation of magnetic skyrmions in 2D van der Waals magnets
    Li, Xueyan
    Liu, Xiyuan
    Yang, Jiaqi
    Zhang, Yinuo
    Pan, Yi
    MATERIALS TODAY PHYSICS, 2025, 54
  • [27] Van der Waals magnets: Wonder building blocks for two-dimensional spintronics?
    Zhang, Wen
    Wong, Ping Kwan Johnny
    Zhu, Rui
    Wee, Andrew T. S.
    INFOMAT, 2019, 1 (04) : 479 - 495
  • [28] Predicting magnetic properties of van der Waals magnets using graph neural networks
    Minch, Peter
    Bhattarai, Romakanta
    Choudhary, Kamal
    Rhone, Trevor David
    PHYSICAL REVIEW MATERIALS, 2024, 8 (11):
  • [29] Multilevel resistance states in van der Waals multiferroic tunnel junctions above room temperature
    Zhang, Yuanxiang
    Li, Xinlu
    Sheng, Jichao
    Yu, Shujie
    Zhang, Jia
    Su, Yurong
    APPLIED PHYSICS LETTERS, 2023, 123 (19)
  • [30] Exploitable magnetic anisotropy and half-metallicity controls in multiferroic van der Waals heterostructure
    Wang, Yaping
    Xu, Xinguang
    Ji, Weixiao
    Li, Shengshi
    Li, Yanlu
    Zhao, Xian
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)