Advancements in methane pyrolysis: A comprehensive review of parameters and molten catalysts in bubble column reactors

被引:2
作者
Gunarayu, Mathesh Rao [1 ]
Patah, Muhamad Fazly Abdul [1 ]
Daud, Wan Mohd Ashri Wan [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
关键词
Methane pyrolysis; Hydrogen production; Molten metal catalysts; Operating parameters; Bubble column reactor; Gas-liquid interaction; NATURAL-GAS PYROLYSIS; HYDROGEN-PRODUCTION; HIGH-TEMPERATURE; MASS-TRANSFER; DECOMPOSITION; HYDRODYNAMICS; CRACKING; SYSTEM; SIZE; CONVERSION;
D O I
10.1016/j.rser.2024.115197
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Methane pyrolysis using molten catalysts in bubble column reactors is a promising method for hydrogen production without carbon emissions. This review analyses the role of molten metal and salt catalysts, as well as key operating parameters, including reaction temperature, methane concentration, gas hourly space velocity, superficial gas velocity, and bubble size, alongside the impact of refractory coatings and reactor design on process efficiency. The findings reveal that molten tin and gallium catalysts achieve methane conversion rates exceeding 90 % at temperatures above 1000 degrees C, while molten salts help obtain carbon with high purity and provide operational stability. Methane concentration range from 90 to 100 % is shown to be optimal for maximizing hydrogen yield. A methane flow rate range of 100-300 ml/min, combined with adequate reactor volume and molten catalyst bed area, enhances gas-liquid interaction and methane conversion. Smaller bubble sizes, around 0.5 mm, are most effective for improving surface area and mass transfer, accelerating reaction kinetics and boosting conversion rates. The use of refractory coatings extends reactor lifespan by mitigating corrosion and thermal stress, while optimized reactor design, including increased column height and adjusted orifice size, improves gas dispersion and reactor performance. This review uniquely bridges the gap between molten metal catalysts and reactor dynamics in methane pyrolysis, offering actionable insights for process optimization and industrial scalability. By highlighting overlooked synergies and operational parameters, this study provides a novel and prospective roadmap for advancing hydrogen production technology.
引用
收藏
页数:15
相关论文
共 95 条
[61]   Initial experimental and theoretical investigation of solar molten media methane cracking for hydrogen production [J].
Paxman, D. ;
Trottier, S. ;
Nikoo, M. ;
Secanell, M. ;
Ordorica-Garcia, G. .
PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 :2027-2036
[62]  
PDH Online, 2020, Overview of Refractory Materials
[63]   Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment [J].
Perez, Brandon Jose Leal ;
Jimenez, Jose Antonio Medrano ;
Bhardwaj, Rajat ;
Goetheer, Earl ;
Annaland, Martin van Sint ;
Gallucci, Fausto .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) :4917-4935
[64]   Combined Methane Pyrolysis and Solid Carbon Gasification for Electrified CO2-Free Hydrogen and Syngas Production [J].
Perreault, Patrice ;
Boruntea, Cristian-Renato ;
Yadav, Heena Dhawan ;
Solino, Iria Portela ;
Kummamuru, Nithin B. .
ENERGIES, 2023, 16 (21)
[65]   Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis [J].
Plevan, M. ;
Geissler, T. ;
Abanades, A. ;
Mehravaran, K. ;
Rathnam, R. K. ;
Rubbia, C. ;
Salmieri, D. ;
Stoppel, L. ;
Stueckrad, S. ;
Wetzel, Th. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (25) :8020-8033
[66]   Solid carbon co-products from hydrogen production by methane pyrolysis: Current understandings and recent progress [J].
Prabowo, Justin ;
Lai, Leo ;
Chivers, Benjamin ;
Burke, Declan ;
Dinh, An Huy ;
Ye, Linlin ;
Wang, Yangyang ;
Wang, Yanqing ;
Wei, Li ;
Chen, Yuan .
CARBON, 2024, 216
[67]   Optimization of a fluidized bed reactor for methane decomposition over Fe/Al2O3 catalysts: Activity and regeneration studies [J].
Qian, Jing Xia ;
Enakonda, Linga Reddy ;
Wang, Wen Ju ;
Gary, Daniel ;
Del-Gallo, Pascal ;
Basset, Jean-Marie ;
Liu, Da Bin ;
Zhou, Lu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (60) :31700-31711
[68]   Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts [J].
Rahimi, Nazanin ;
Kang, Dohyung ;
Gelinas, John ;
Menon, Aditya ;
Gordon, Michael J. ;
Metiu, Horia ;
McFarland, Eric W. .
CARBON, 2019, 151 :181-191
[69]   Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J].
Rioche, C ;
Kulkarni, S ;
Meunier, FC ;
Breen, JP ;
Burch, R .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 61 (1-2) :130-139
[70]   Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070 [J].
Rissman, Jeffrey ;
Bataille, Chris ;
Masanet, Eric ;
Aden, Nate ;
Morrow, William R., III ;
Zhou, Nan ;
Elliott, Neal ;
Dell, Rebecca ;
Heeren, Niko ;
Huckestein, Brigitta ;
Cresko, Joe ;
Miller, Sabbie A. ;
Roy, Joyashree ;
Fennell, Paul ;
Cremmins, Betty ;
Blank, Thomas Koch ;
Hone, David ;
Williams, Ellen D. ;
du Can, Stephane de la Rue ;
Sisson, Bill ;
Williams, Mike ;
Katzenberger, John ;
Burtraw, Dallas ;
Sethi, Girish ;
Ping, He ;
Danielson, David ;
Lu, Hongyou ;
Lorber, Tom ;
Dinkel, Jens ;
Helseth, Jonas .
APPLIED ENERGY, 2020, 266