We study the combination of the alternating direction method of multipliers (ADMM) with physics-informed neural networks (PINNs) for a general class of nonsmooth partial differential equation (PDE)-constrained optimization problems, where additional regularization can be employed for constraints on the control or design variables. The resulting ADMM-PINNs algorithmic framework substantially enlarges the applicable range of PINNs to nonsmooth cases of PDE-constrained optimization problems. The application of the ADMM makes it possible to separate the PDE constraints and the nonsmooth regularization terms for iterations. Accordingly, at each iteration, one of the resulting subproblems is a smooth PDE-constrained optimization which can be efficiently solved by PINNs, and another is a simple nonsmooth optimization problem, which usually has a closed-form solution or can be efficiently solved by various standard optimization algorithms or pretrained neural networks. The ADMM-PINNs algorithmic framework does not require one to solve PDEs repeatedly, and it is mesh-free, easy to implement, and scalable to different PDE settings. We validate the efficiency of the ADMM-PINNs algorithmic framework by different prototypical applications, including inverse potential problems, source identification in elliptic equations, control constrained optimal control of the Burgers equation, and sparse optimal control of parabolic equations.
机构:
Fdn Deusto, Ave Univ 24, Bilbao 48007, Basque, Spain
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Biccari, Umberto
Song, Yongcun
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Song, Yongcun
Yuan, Xiaoming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Yuan, Xiaoming
Zuazua, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Fdn Deusto, Ave Univ 24, Bilbao 48007, Basque, Spain
Univ Autonoma Madrid, Dept Matemat, Madrid 28049, SpainFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
机构:
Fdn Deusto, Ave Univ 24, Bilbao 48007, Basque, Spain
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Biccari, Umberto
Song, Yongcun
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Song, Yongcun
Yuan, Xiaoming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Yuan, Xiaoming
Zuazua, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
Fdn Deusto, Ave Univ 24, Bilbao 48007, Basque, Spain
Univ Autonoma Madrid, Dept Matemat, Madrid 28049, SpainFriedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany