Unconditional error analysis of weighted implicit-explicit virtual element method for nonlinear neutral delay-reaction-diffusion equation

被引:1
作者
Peng, Shanshan [1 ]
Chen, Yanping [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 140卷
基金
中国国家自然科学基金;
关键词
Nonlinear neutral delay-reaction-diffusion equation; Virtual element method; Weighted IMEX method; Error splitting technique; Convergence; STOKES PROBLEM; STABILITY; SCHEME;
D O I
10.1016/j.cnsns.2024.108384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a virtual element method in space for the nonlinear neutral delayreaction-diffusion equation, while a weighted implicit-explicit scheme is utilized in time. The nonlinear term is adopted by using the Newton linearized method. The calculation efficiency is improved using an implicit scheme to analyze linear terms and an explicit scheme to deal with nonlinear terms. Then, the time-space error splitting technique and G-stability are creatively combined to rigorously analyze the unconditionally optimal convergence results of the numerical scheme without any restrictions on the mesh ratio. Finally, numerical examples on a set of polygonal meshes are provided to confirm the theoretical results. In particular, when the weighted parameter is taken 0 = 12 (or 0 = 1 ), the method degenerates into the Crank-Nicolson (or second-order backward differential formula (BDF2)) scheme.
引用
收藏
页数:23
相关论文
共 40 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
Antonietti P., 2022, The virtual element method and its applications, V31
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[5]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[6]  
Balachandran B., 2009, DELAY DIFFERENTIAL E
[7]   Stabilization of the nonconforming virtual element method [J].
Bertoluzza, S. ;
Manzini, G. ;
Pennacchio, M. ;
Prada, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 116 :25-47
[8]   Some error analysis on virtual element methods [J].
Chen, Long ;
Huang, Jianguo .
CALCOLO, 2018, 55 (01)
[9]   VIRTUAL ELEMENTS FOR THE NAVIER-STOKES PROBLEM ON POLYGONAL MESHES [J].
da Veiga, L. Beirao ;
Lovadina, C. ;
Vacca, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) :1210-1242
[10]   Stability analysis for the virtual element method [J].
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Russo, Alessandro .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (13) :2557-2594