Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks

被引:0
|
作者
Ayaz, Ferheen [3 ]
Zakariyya, Idris [1 ]
Cano, José [1 ]
Keoh, Sye Loong [1 ]
Singer, Jeremy [1 ]
Pau, Danilo [2 ]
Kharbouche-Harrari, Mounia [2 ]
机构
[1] University of Glasgow, United Kingdom
[2] STMicroelectronics, Switzerland
[3] University of Sussex, United Kingdom
来源
arXiv | 2023年
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Adversarial attack - Black boxes - Co-optimization - Deep neural network - Jacobian regularization - Jacobians - Neural network model - Qkera - Regularisation - White box
引用
收藏
相关论文
共 50 条
  • [41] ShieldNets: Defending Against Adversarial Attacks Using Probabilistic Adversarial Robustness
    Theagarajan, Rajkumar
    Chen, Ming
    Bhanu, Bir
    Zhang, Jing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6981 - 6989
  • [42] Comparison of the Resilience of Convolutional and Cellular Neural Networks Against Adversarial Attacks
    Horvath, Andras
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2348 - 2352
  • [43] Evolving Hyperparameters for Training Deep Neural Networks against Adversarial Attacks
    Liu, Jia
    Jin, Yaochu
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1778 - 1785
  • [44] Is Approximation Universally Defensive Against Adversarial Attacks in Deep Neural Networks?
    Siddique, Ayesha
    Hoque, Khaza Anuarul
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 364 - 369
  • [45] Graph Structure Reshaping Against Adversarial Attacks on Graph Neural Networks
    Wang, Haibo
    Zhou, Chuan
    Chen, Xin
    Wu, Jia
    Pan, Shirui
    Li, Zhao
    Wang, Jilong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6344 - 6357
  • [46] HeteroGuard: Defending Heterogeneous Graph Neural Networks against Adversarial Attacks
    Kumarasinghe, Udesh
    Nabeel, Mohamed
    De Zoysa, Kasun
    Gunawardana, Kasun
    Elvitigala, Charitha
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 698 - 705
  • [47] Efficacy of Defending Deep Neural Networks against Adversarial Attacks with Randomization
    Zhou, Yan
    Kantarcioglu, Murat
    Xi, Bowei
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413
  • [48] Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
    Zoppi, Tommaso
    Ceccarelli, Andrea
    IEEE ACCESS, 2021, 9 : 150579 - 150591
  • [49] Centered-Ranking Learning Against Adversarial Attacks in Neural Networks
    Appiah, Benjamin
    Adu, Adolph S. Y.
    Osei, Isaac
    Assamah, Gabriel
    Hammond, Ebenezer N. A.
    International Journal of Network Security, 2023, 25 (05) : 814 - 820
  • [50] Robust convolutional neural networks against adversarial attacks on medical images
    Shi, Xiaoshuang
    Peng, Yifan
    Chen, Qingyu
    Keenan, Tiarnan
    Thavikulwat, Alisa T.
    Lee, Sungwon
    Tang, Yuxing
    Chew, Emily Y.
    Summers, Ronald M.
    Lu, Zhiyong
    PATTERN RECOGNITION, 2022, 132