Fuzzy diversity entropy as a nonlinear measure for the intelligent fault diagnosis of rotating machinery

被引:0
|
作者
Jiao, Zehang [1 ]
Noman, Khandaker [2 ]
He, Qingbo [3 ]
Deng, Zichen [1 ]
Li, Yongbo [1 ,4 ,5 ]
Eliker, K. [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Civil Aviat, Xian, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
[4] Aircraft Strength Res Inst China, Xian 710065, Peoples R China
[5] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Entropy; Fault diagnosis; Time series analysis; Rotating machinery; Complexity quantification; FRACTIONAL GAUSSIAN-NOISE; APPROXIMATE ENTROPY; PERMUTATION ENTROPY; SCHEME;
D O I
10.1016/j.aei.2024.103057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The entropy-based fault complexity characterization method has garnered significant attention in recent times, owing to its effectiveness and superiority in monitoring the health status of rotating machinery. Due to its high consistency, diversity Entropy (DE) can effectively quantify the irregularity of data and has been widely used in complexity analysis and fault diagnosis. However, the rigorous classification boundary leads to the absence of cosine similarity diversity during DE calculation, which will cause the inaccurate complexity estimation of time series collected from rotating machineries, unable to fully capture subtle changes in the signal, and affecting the accurate representation of fault features. In this paper, fuzzy diversity entropy (FDE) is proposed to solve this problem by incorporating the concept of fuzzy sets during the calculation diversity entropy. FDE employs fuzzy membership degrees as a replacement for the probability of cosine similarity falling into each interval, effectively distinguishing the cosine similarity of the same class that is considered equivalent by DE, and enhancing sensitivity to subtle signal variations. FDE effectively preserves the diversity information in the signal, and entropy estimation is more comprehensive and accurate, reflecting the complex dynamic characteristics of rotating machinery more realistically. Performance of the proposed FDE algorithm is verified by both numerically simulated signals and experimental signals collected from rotating machinery in comparison to original DE algorithm along with state-of-the-art fuzzy entropy (FE) and permutation entropy (PE). Results show that FDE can not only effectively quantify the complexity of rotating machinery time series but also possess low parameter sensitivity and computational cost. Furthermore, the experimental results have verified that FDE can be effectively applied in vibration signal feature extraction and fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A visual vibration characterization method for intelligent fault diagnosis of rotating machinery
    Peng, Cong
    Gao, Haining
    Liu, Xiaoyue
    Liu, Bin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192
  • [32] An Efficient Sequential Embedding ConvNet for Rotating Machinery Intelligent Fault Diagnosis
    Tang, Jian
    Wu, Qihang
    Li, Xiaobo
    Wei, Chao
    Ding, Xiaoxi
    Huang, Wenbin
    Shao, Yimin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [33] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [34] Categorical Feature GAN for Imbalanced Intelligent Fault Diagnosis of Rotating Machinery
    Dai, Jun
    Wang, Jun
    Yao, Linquan
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] An intelligent fault diagnosis of rotating machinery in class-incremental scenarios
    Han, Yan
    Zhang, Xiaolong
    Su, Zuqiang
    Huang, Qingqing
    Zhang, Yan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [36] Intelligent fault diagnosis of rotating machinery using infrared thermal image
    Younus, Ali M. D.
    Yang, Bo-Suk
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 2082 - 2091
  • [37] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [38] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [39] Application of fuzzy data fusion theory in fault diagnosis of rotating machinery
    Jafari, Hamideh
    Poshtan, Javad
    Sadeghi, Hamed
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2018, 232 (08) : 1015 - 1024
  • [40] Diversity Measures in Classifier Ensembles Used for Rotating Machinery Fault Diagnosis
    Jamrozik, Wojciech
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2016, 4 : 309 - 319