Low-rank extragradient methods for scalable semidefinite optimization

被引:0
|
作者
Garber, Dan [1 ]
Kaplan, Atara [1 ]
机构
[1] Technion Israel Inst Technol, Fac Data & Decis Sci, Haifa, Israel
基金
以色列科学基金会;
关键词
Semidefinite programming; Low-rank matrix recovery; Low-rank optimization; Nonsmooth semidefinite optimization; MATRIX COMPLETION; CONVERGENCE; GRADIENT;
D O I
10.1016/j.orl.2024.107230
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a class of important semidefinite optimization problems that involve a convex smooth or nonsmooth objective function and linear constraints. Focusing on high-dimensional settings with a low-rank solution that also satisfies a low-rank complementarity condition, we prove that the well-known Extragradient method, when initialized with a "warm-start", converges with its standard convergence rate guarantees, using only efficient low-rank singular value decompositions to project onto the positive semidefinite cone. Supporting numerical evidence with a dataset of Max-Cut instances is provided.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
    Garber, Dan
    Kaplan, Atara
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] SOLVING PHASELIFT BY LOW-RANK RIEMANNIAN OPTIMIZATION METHODS FOR COMPLEX SEMIDEFINITE CONSTRAINTS
    Huang, Wen
    Gallivan, K. A.
    Zhang, Xiangxiong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : B840 - B859
  • [3] LOW-RANK OPTIMIZATION ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    Journee, M.
    Bach, F.
    Absil, P. -A.
    Sepulchre, R.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2327 - 2351
  • [4] Low-rank quadratic semidefinite programming
    Yuan, Ganzhao
    Zhang, Zhenjie
    Ghanem, Bernard
    Hao, Zhifeng
    NEUROCOMPUTING, 2013, 106 : 51 - 60
  • [5] Computational enhancements in low-rank semidefinite programming
    Burer, S
    Choi, C
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (03): : 493 - 512
  • [6] Low-rank exploitation in semidefinite programming for control
    Falkeborn, Rikard
    Lofberg, Johan
    Hansson, Anders
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (12) : 1975 - 1982
  • [7] Efficient Low-Rank Stochastic Gradient Descent Methods for Solving Semidefinite Programs
    Chen, Jianhui
    Yang, Tianbao
    Zhu, Shenghuo
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 122 - 130
  • [8] An equivalent nonlinear optimization model with triangular low-rank factorization for semidefinite programs
    Yamakawa, Yuya
    Ikegami, Tetsuya
    Fukuda, Ellen H. H.
    Yamashita, Nobuo
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1296 - 1310
  • [9] Solving clustered low-rank semidefinite programs arising from polynomial optimization
    Leijenhorst, Nando
    de Laat, David
    MATHEMATICAL PROGRAMMING COMPUTATION, 2024, 16 (03) : 503 - 534
  • [10] Solving PhaseLift by Low-rank Riemannian Optimization Methods
    Huang, Wen
    Gallivan, Kyle A.
    Zhang, Xiangxiong
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1125 - 1134