Sobolev spaces for singular perturbation of 2D Laplace operator

被引:2
作者
Georgiev, Vladimir [1 ,2 ,3 ]
Rastrelli, Mario [1 ,2 ]
机构
[1] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Bulgaria
关键词
Singular perturbation of Laplace operator; Sobolev spaces; Nonlinear Schrodinger equation; FRACTIONAL-POWERS; EQUATION;
D O I
10.1016/j.na.2024.113710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the perturbed Sobolev space H-alpha(1,r.), r is an element of(1, infinity), associated with singular perturbation Delta(alpha) of Laplace operator in Euclidean space of dimension 2. The main results give the possibility to extend the L-2 theory of perturbed Sobolev space to the L-r case. When r is an element of (2, infinity) we have appropriate representation of the functions in H-alpha(1,r.) in regular and singular part. An application to local well-posedness of the NLS associated with this singular perturbation in the mass critical and mass supercritical cases is established too.
引用
收藏
页数:24
相关论文
共 31 条
[21]   Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators [J].
Kalton, Nigel ;
Kunstmann, Peer ;
Weis, Lutz .
MATHEMATISCHE ANNALEN, 2006, 336 (04) :747-801
[22]   Existence and blow up of small-amplitude nonlinear waves with a sign-changing potential [J].
Karageorgis, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :259-305
[23]  
Kato T., 1966, PERTURBATION THEORY
[24]   FRACTIONAL POWERS OF OPERATORS [J].
KOMATSU, H .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (02) :285-&
[25]   FRACTIONAL POWERS OF OPERATORS .2. INTERPOLATION SPACES [J].
KOMATSU, H .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (01) :89-&
[26]   Fractional powers and singular perturbations of quantum differential Hamiltonians [J].
Michelangeli, A. ;
Ottolini, A. ;
Scandone, R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
[27]   Singular Hartree equation in fractional perturbed Sobolev spaces [J].
Michelangeli, Alessandro ;
Olgiati, Alessandro ;
Scandone, Raffaele .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2018, 25 (04) :558-588
[28]   DERIVATION OF THE TIME-DEPENDENT PROPAGATOR FOR THE 3-DIMENSIONAL SCHRODINGER-EQUATION WITH ONE POINT INTERACTION [J].
SCARLATTI, S ;
TETA, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :L1033-L1035
[29]  
SIMON B, 1973, ARCH RATION MECH AN, V52, P44, DOI 10.1007/BF00249091
[30]  
Watson GN., 1944, A Treatise on the Theory of Bessel Functions, V2