Sobolev spaces for singular perturbation of 2D Laplace operator

被引:3
作者
Georgiev, Vladimir [1 ,2 ,3 ]
Rastrelli, Mario [1 ,2 ]
机构
[1] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Bulgaria
关键词
Singular perturbation of Laplace operator; Sobolev spaces; Nonlinear Schrodinger equation; FRACTIONAL-POWERS; EQUATION;
D O I
10.1016/j.na.2024.113710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the perturbed Sobolev space H-alpha(1,r.), r is an element of(1, infinity), associated with singular perturbation Delta(alpha) of Laplace operator in Euclidean space of dimension 2. The main results give the possibility to extend the L-2 theory of perturbed Sobolev space to the L-r case. When r is an element of (2, infinity) we have appropriate representation of the functions in H-alpha(1,r.) in regular and singular part. An application to local well-posedness of the NLS associated with this singular perturbation in the mass critical and mass supercritical cases is established too.
引用
收藏
页数:24
相关论文
共 31 条
[11]  
Dell'Antonio G, 2018, ANN HENRI POINCARE, V19, P283, DOI 10.1007/s00023-017-0628-4
[12]  
Engel K.J., 2000, Graduate Texts in Mathematics, V1st ed.
[13]  
Erdelyi A., 1981, BASED NOTES LEFT H B, pxviii+396
[14]   On stability and instability of standing waves for 2d-nonlinear Schrodinger equations with point interaction [J].
Fukaya, Noriyoshi ;
Georgiev, Vladimir ;
Ikeda, Masahiro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 :258-295
[15]   Standing waves and global well-posedness for the 2d Hartree equation with a point interaction [J].
Georgiev, Vladimir ;
Michelangeli, Alessandro ;
Scandone, Raffaele .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (03) :242-278
[16]  
Georgiev V, 2023, Oberwolfach Reports, V19, P2601, DOI [10.4171/owr/2022/44, 10.4171/owr/2022/44, DOI 10.4171/OWR/2022/44]
[17]   Schrodinger Flow's Dispersive Estimates in a regime of Re-scaled Potentials [J].
Georgiev, Vladimir ;
Michelangeli, Alessandro ;
Scandone, Raffaele .
QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 :111-125
[18]   On fractional powers of singular perturbations of the Laplacian [J].
Georgiev, Vladimir ;
Michelangeli, Alessandro ;
Scandone, Raffaele .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (06) :1551-1602
[19]  
Henry Daniel., 2006, Geometric theory of semilinear parabolic equations, V840
[20]   Dispersive Estimates for Schrodinger Operators with Point Interactions in R3 [J].
Iandoli, Felice ;
Scandone, Raffaele .
ADVANCES IN QUANTUM MECHANICS: CONTEMPORARY TRENDS AND OPEN PROBLEMS, 2017, 18 :187-199