Sobolev spaces for singular perturbation of 2D Laplace operator

被引:2
作者
Georgiev, Vladimir [1 ,2 ,3 ]
Rastrelli, Mario [1 ,2 ]
机构
[1] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Bulgaria
关键词
Singular perturbation of Laplace operator; Sobolev spaces; Nonlinear Schrodinger equation; FRACTIONAL-POWERS; EQUATION;
D O I
10.1016/j.na.2024.113710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the perturbed Sobolev space H-alpha(1,r.), r is an element of(1, infinity), associated with singular perturbation Delta(alpha) of Laplace operator in Euclidean space of dimension 2. The main results give the possibility to extend the L-2 theory of perturbed Sobolev space to the L-r case. When r is an element of (2, infinity) we have appropriate representation of the functions in H-alpha(1,r.) in regular and singular part. An application to local well-posedness of the NLS associated with this singular perturbation in the mass critical and mass supercritical cases is established too.
引用
收藏
页数:24
相关论文
共 31 条
[1]   Existence, structure, and robustness of ground states of a NLSE in 3D with a point defect [J].
Adami, Riccardo ;
Boni, Filippo ;
Carlone, Raffaele ;
Tentarelli, Lorenzo .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)
[2]   Ground states for the planar NLSE with a point defect as minimizers of the constrained energy [J].
Adami, Riccardo ;
Boni, Filippo ;
Carlone, Raffaele ;
Tentarelli, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
[3]   FUNDAMENTAL SOLUTION OF THE HEAT AND SCHRODINGER-EQUATIONS WITH POINT INTERACTION [J].
ALBEVERIO, S ;
BRZEZNIAK, Z ;
DABROWSKI, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :220-254
[4]  
ALBEVERIO S, 1981, J OPERAT THEOR, V6, P313
[5]  
BEREZIN FA, 1961, DOKL AKAD NAUK SSSR+, V137, P1011
[6]   Well posedness of the nonlinear Schrodinger equation with isolated singularities [J].
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 :288-318
[7]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI [10.1090/cln/010, DOI 10.1090/CLN/010]
[8]   Two-dimensional Schrodinger operators with point interactions: Threshold expansions, zero modes and Lp-boundedness of wave operators (vol 31, 1950012, 2019) [J].
Cornean, Horia D. ;
Michelangeli, Alessandro ;
Yajima, Kenji .
REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (04)
[9]   Two-dimensional Schrodinger operators with point interactions: Threshold expansions, zero modes and Lp-boundedness of wave operators [J].
Cornean, Horia D. ;
Michelangeli, Alessandro ;
Yajima, Kenji .
REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (04)
[10]   Dispersive estimate for the Schrodinger equation with point interactions [J].
D'Ancona, P ;
Pierfelice, V ;
Teta, A .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (03) :309-323