Highly responsive and stable room temperature acetic acid gas sensor based on nano-composite of MXene Ti3C2TX-NiCo2O4-MnO2

被引:2
|
作者
Akhtar, Ali [1 ,2 ,3 ]
Sadaf, Shama [1 ,2 ,3 ]
Zhou, Rujun [1 ]
Ling, Qiang [1 ]
Luo, Si [1 ]
Han, Mingming [1 ,2 ,3 ,4 ]
Di, Wu [4 ]
Liu, Jianqiao [4 ]
Chen, Daru [1 ]
Chu, Xiangfeng [5 ]
机构
[1] Zhejiang Normal Univ, Hangzhou Inst Adv Studies, Hangzhou 311231, Peoples R China
[2] Zhejiang Normal Univ, Zhejiang Inst Photoelect, Jinhua 321004, Zhejiang, Peoples R China
[3] Zhejiang Normal Univ, Zhejiang Inst Adv Light Source, Jinhua 321004, Zhejiang, Peoples R China
[4] Dalian Maritime Univ, Coll Informat Sci & Technol, Dalian 116026, Liaoning, Peoples R China
[5] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Acetic acid; Room temperature; Gas sensing; Hydrothermal method; ANODE MATERIAL; NANOSTRUCTURE; TI3C2TX; NO2;
D O I
10.1016/j.jallcom.2024.177715
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing novel acetic acid gas sensors is highly imperative for human health. Two-dimensional (2D) layered MXene Ti3C2Tx is becoming an emerging and promising material in gas sensing. In this manuscript, the hydrothermal method was used to synthesize MXenes Ti3C2Tx/Nb2CTx supported NiCo2O4-MnO2 composites and pure materials. The structure, chemical composition and morphology of the samples were studied by SEM, EDS, TEM, HRTEM, XRD, BET, FTIR, UV-visible, XPS and Raman, justifying the successful synthesis of products. The layered structure of Ti3C2Tx enhanced the BET surface area and provided sufficient sites, which assisted the gas sensing improvement. The gas sensors were fabricated from synthesized products and were tested for different kinds of VOCs deeply. The results exposed that the gas sensor of Ti3C2Tx-NiCo2O4-MnO2 (5 % of Ti3C2Tx = NCOMn-Ti-5) was highly sensitive to 20 ppm acetic acid and very less responsive to all other VOCs (acetone, TMA, ethanol, methanol, formaldehyde, acetaldehyde, acetylene and xylene) at room temperature. The response (Rg/ Ra) to 20 ppm acetic acid was 12.5 and the lowest detection limit was 0.05 ppm. Additionally, the sensor of NCOMn-Ti-5 revealed great stability/reproducibility, short response/recovery times and linearity between acetic acid concentration and response. The idea of the novel sensor (NCO-Mn-Ti-5) could be potentially useful in the field of sensors.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Flexible resistive NO2 gas sensor of SnO2@Ti3C2Tx MXene for room temperature application
    Liu, Xin
    Zhang, Hanmei
    Shen, Tao
    Sun, Jianbo
    CERAMICS INTERNATIONAL, 2024, 50 (01) : 2459 - 2466
  • [2] Ti3C2Tx MXene-SnO2 nanocomposite for superior room temperature ammonia gas sensor
    Yu, Huimin
    Dai, Longhui
    Liu, Yangquan
    Zhou, Yue
    Fan, Ping
    Luo, Jingting
    Zhong, Aihua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [3] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484
  • [4] Ultrasensitive ammonia gas sensor based on Ti3C2Tx/Ti3AlC2 planar composite at room temperature
    Liu, Zhihua
    Han, Dan
    Liu, Lulu
    Li, Donghui
    Han, Xiaomei
    Chen, Yi
    Liu, Xiaoru
    Zhuo, Kai
    Cheng, Yongqiang
    Sang, Shengbo
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 378
  • [5] Ni-doped MnO2/Ti3C2Tx MXene nanocomposite for highly sensitive electrochemical ammonia gas sensing at room temperature
    Elancheziyan, Mari
    Singh, Manisha
    Bhuvanendran, Narayanamoorthy
    Won, Keehoon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [6] Highly selective ethanol gas sensor based on CdS/Ti3C2Tx MXene composites
    Nhiem, Ly Tan
    Mao, Jianbin
    Ta, Qui Thanh Hoai
    Seo, Soonmin
    NANOSCALE ADVANCES, 2025, 7 (05): : 1452 - 1463
  • [7] A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction
    Ma, Shiteng
    Guo, Jingyu
    Zhang, Hao
    Shao, Xingyan
    Zhang, Dongzhi
    NANOMATERIALS, 2024, 14 (06)
  • [8] Room temperature and anti-humidity NH3 detection based on GaN nanorods/Ti3C2Tx MXene composite gas sensor
    Han, Dan
    Liu, Zhihua
    Liu, Lulu
    Li, Donghui
    Chen, Yi
    Wang, Hongtao
    Zhao, Li
    Wang, Weidong
    Sang, Shengbo
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [9] High Sensitivity Bi2O3/Ti3C2Tx Ammonia Sensor Based on Improved Synthetic MXene Method at Room Temperature
    Zhou, Baocang
    Zhao, Zhihua
    Lv, Zhenli
    Chen, Zhuo
    Kang, Sibo
    SENSORS, 2024, 24 (20)
  • [10] In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature
    Liu, Miao
    Wang, Zeyu
    Song, Peng
    Yang, Zhongxi
    Wang, Qi
    CERAMICS INTERNATIONAL, 2021, 47 (16) : 23028 - 23037