Instant two-image diffractive lattice structured illumination microscopy using transfer learning

被引:0
作者
Zhang, Cilong [1 ]
Du, Yuzhe [1 ]
Tan, Qiaofeng [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement & Instruments, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Structured illumination microscopy; Diffractive lattice; Instant imaging; Transfer learning; RESOLUTION; RECONSTRUCTION; LIMIT;
D O I
10.1016/j.optlaseng.2024.108732
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conventional structured illumination microscopy (SIM) requires at least nine raw images to reconstruct a super- resolution image, which limits its temporal resolution and applicability to dynamic samples. To overcome this limitation, we have developed a two-image diffractive lattice SIM (TIDL-SIM) using transfer learning. It uses only two images, a wide-field image and a diffractive lattice illumination modulated image, to construct the super- resolution image. A deep neural network extracts low spatial frequency information from the wide-field image and high spatial frequency information from the modulated image. It is trained on an auxiliary domain consisting of simulated images, but is transferable to the target task of reconstructing experimental SIM images. Finally, the TIDL-SIM achieves super-resolution live-cell imaging with acquisition time of 40 milliseconds and construction time of approximately 29 milliseconds per frame. The reduced acquisition and construction time will facilitate the advancement of real-time SIM.
引用
收藏
页数:8
相关论文
共 32 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement [J].
Chai, Changchun ;
Chen, Cheng ;
Liu, Xiaojun ;
Lei, ZiLi .
OPTICS EXPRESS, 2021, 29 (03) :4010-4021
[5]   Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging [J].
Chen, Rong ;
Tang, Xiao ;
Zhao, Yuxuan ;
Shen, Zeyu ;
Zhang, Meng ;
Shen, Yusheng ;
Li, Tiantian ;
Chung, Casper Ho Yin ;
Zhang, Lijuan ;
Wang, Ji ;
Cui, Binbin ;
Fei, Peng ;
Guo, Yusong ;
Du, Shengwang ;
Yao, Shuhuai .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]   ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning [J].
Christensen, Charles N. ;
Ward, Edward N. ;
Lu, Meng ;
Lio, Pietro ;
Kaminski, Clemens F. .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) :2720-2733
[7]   Resolution doubling with a reduced number of image acquisitions [J].
Dong, Siyuan ;
Liao, Jun ;
Guo, Kaikai ;
Bian, Liheng ;
Suo, Jinli ;
Zheng, Guoan .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (08) :2946-2952
[8]   High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography [J].
Dong, Siyuan ;
Nanda, Pariksheet ;
Shiradkar, Radhika ;
Guo, Kaikai ;
Zheng, Guoan .
OPTICS EXPRESS, 2014, 22 (17) :20856-20870
[9]   Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data [J].
Foi, Alessandro ;
Trimeche, Mejdi ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1737-1754
[10]   GPU-accelerated real-time reconstruction in Python']Python of three-dimensional datasets from structured illumination microscopy with hexagonal patterns [J].
Gong, Hai ;
Guo, Wenjun ;
Neil, Mark A. A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2199)