Two-disjoint-cycle-cover edge/vertex bipancyclicity of star graphs

被引:0
|
作者
Xue, Shudan [1 ]
Lu, Zai Ping [1 ,2 ]
Qiao, Hongwei [1 ,2 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Star graph; Vertex-disjoint cycles; Edge bipancyclicity; Vertex bipancyclicity; EDGE-BIPANCYCLICITY; HAMILTONIAN LACEABILITY; STRUCTURAL-PROPERTIES; VERTEX-PANCYCLICITY; CYCLES; PATHS;
D O I
10.1016/j.dam.2024.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bipartite graph G is two-disjoint-cycle-cover edge [r(1),r(2)]-bipancyclic if, for any vertex-disjoint edges uv and xy in G and any even integer l satisfying r(1) <= l <= r(2), there exist vertex-disjoint cycles C-1 and C-2 such that |V(C-1)| = l, |V(C-2)| = |V(G)| - l, uv is an element of E(C-1) and xy is an element of E(C-2). In this paper, we prove that the n-star graph Sn is two-disjoint-cycle-cover edge [6,n!/2]-bipancyclic for n >= 5, and thus it is two-disjoint-cycle-cover vertex [6,n!/2]-bipancyclic for n >= 5. Additionally, it is examined that S-n is two-disjoint-cycle-cover [6,n!/2]-bipancyclic for n >= 4. (c) 2024 Published by Elsevier B.V.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 19 条
  • [1] Two-disjoint-cycle-cover bipancyclicity of balanced hypercubes
    Wei, Chao
    Hao, Rong-Xia
    Chang, Jou-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [2] Two-disjoint-cycle-cover bipancyclicity of bubble-sort star graphs
    Zhang, Hui
    Hao, Rong-Xia
    Lai, Hong-Jian
    Lee, Jaeun
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 320 - 328
  • [3] Two-disjoint-cycle-cover vertex bipancyclicity of the bipartite generalized hypercube
    Niu, Ruichao
    Xu, Min
    Lai, Hong-Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 400
  • [4] Two-disjoint-cycle-cover vertex bipancyclicity of bipartite hypercube-like networks
    Niu, Ruichao
    Zhou, Shujie
    Xu, Min
    THEORETICAL COMPUTER SCIENCE, 2023, 947
  • [5] Two-disjoint-cycle-cover pancyclicity of split-star networks
    Li, Hao
    Chen, Liting
    Lu, Mei
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 487
  • [6] Edge-bipancyclicity of star graphs with faulty elements
    Huang, Chao-Wen
    Huang, Hui-Ling
    Hsieh, Sun-Yuan
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (50) : 6938 - 6947
  • [7] Two-Disjoint-Cycle-Cover Pancyclicity of Augmented Cubes
    Zhou, Shu-Jie
    Xu, Min
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [8] Two-disjoint-cycle-cover pancyclicity of data center networks
    Hao, Rong-Xia
    Qin, Xiao-Wen
    Zhang, Hui
    Chang, Jou-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 475
  • [9] Complete Cycle Embedding in Crossed Cubes with Two-Disjoint-Cycle-Cover Pancyclicity
    Kung, Tzu-Liang
    Chen, Hon-Chan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2670 - 2676
  • [10] Edge-Bipancyclicity of Bubble-Sort Star Graphs
    Guo, Jia
    Lu, Mei
    IEEE ACCESS, 2019, 7 : 134158 - 134163