Immersion cooling innovations and critical hurdles in Li-ion battery cooling for future electric vehicles

被引:14
作者
Wahab, Abdul [1 ,2 ]
Najmi, Aezid-Ul-Hassan [1 ,2 ]
Senobar, Hossein [1 ]
Amjady, Nima [3 ]
Kemper, Hans [2 ]
Khayyam, Hamid [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
[2] FH Aachen Univ Appl Sci, Fac Aerosp Engn, D-52064 Aachen, Germany
[3] Federat Univ Australia, Ctr New Energy Transit Res CfNETR, Ballarat, Vic 3350, Australia
关键词
Battery thermal management systems; Battery energy storage; Electric vehicles; Immersion cooling; Li-ion batteries; Thermal runaway; AI-driven batteries; Machine learning-based battery technologies; Predictive analytics; THERMAL MANAGEMENT-SYSTEM; INTELLIGENT ENERGY MANAGEMENT; HEAT-TRANSFER CHARACTERISTICS; LOW-TEMPERATURE PERFORMANCE; STATE ESTIMATION METHODS; AC DIELECTRIC STRENGTH; PHASE-CHANGE MATERIAL; FAILURE MECHANISMS; AGING MECHANISMS; CYCLE LIFE;
D O I
10.1016/j.rser.2024.115268
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Battery electric vehicles are pivotal in advancing the circular economy by reducing carbon footprints through their sustainable design and low-emission operations. The growing demand for electric vehicles with fastcharging capabilities and high-energy-density Li-Ion batteries has significantly intensified the importance of effective battery thermal management systems, as elevated temperatures can lead to rapid battery degradation and thermal runaway. The study of typical battery cooling techniques seems insufficient to attain temperature homogeneity in the battery pack during fast-charging applications. Therefore, to address this significant challenge, a holistic analysis of immersion cooling technology for battery thermal management is provided, which has the heat transfer rate in the order of magnitudes compared to a typical battery cooling mechanism. In immersion cooling, the battery is submerged in a dielectric coolant, establishing direct contact between the coolant and the heat source. The current state-of-the-art immersion-cooled battery thermal management systems with single-phase and two-phase techniques are comprehensively reviewed. The performance of available immersion coolants is analyzed, and a suitable coolant selection strategy is formulated for battery immersion cooling applications. Besides, critical issues like suppression of thermal runaway, nucleate boiling, immersion coolant effects on battery, and fluid flow optimization with future directions have been discussed comprehensively. A detailed discussion on the economics of battery immersion cooling as a cost-effective solution is included. This study offers an up-to-date review of battery immersion cooling, fostering an improved understanding of advancement in thermal management systems in the context of promoting a circular economy and zero emissions.
引用
收藏
页数:24
相关论文
共 301 条
[1]  
3mdeutschland, 2023, M. 3M special fluids
[2]  
Abeyrathna M, 2021, 2021 3 INT C EL ENG
[3]  
Agency IE, 2022, Global EV Outlook 2022
[4]   Energy management system of networked microgrids through optimal reliability-oriented day-ahead self-healing scheduling [J].
Ahmadi, Seyed Ehsan ;
Rezaei, Navid ;
Khayyam, Hamid .
SUSTAINABLE ENERGY GRIDS & NETWORKS, 2020, 23
[5]   Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review [J].
Akinlabi, A. Hakeem ;
Solyali, Davut .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 125
[6]   Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries [J].
Alamerew, Yohannes A. ;
Brissaud, Daniel .
JOURNAL OF CLEANER PRODUCTION, 2020, 254
[7]   Thermal management systems for batteries in electric vehicles: A recent review [J].
Ali, Hafiz Muhammad .
ENERGY REPORTS, 2023, 9 :5545-5564
[8]  
An XD, 2018, INTSOC CONF THERMAL, P609, DOI 10.1109/ITHERM.2018.8419528
[9]   Numerical study on the phase change and spray characteristics of liquid ammonia flash spray [J].
An, Zhenhua ;
Xing, Jiangkuan ;
Kurose, Ryoichi .
FUEL, 2023, 345
[10]  
[Anonymous], 20. [Open letter to the President of the Republic of Kazakhstan N.A. Nazarbayev from representatives of civil society opposing the promotion of the drug "methadone" in the country as a means for the "treatment" of drug addicts] [Internet]. Zakon.kz. 2011 [cited 2023 Sep 11]