Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model

被引:55
作者
Xiao, Shunli [1 ]
Li, Yangmin [1 ,2 ,3 ]
机构
[1] Univ Macau, Dept Electromech Engn, Fac Sci & Technol, Taipa, Peoples R China
[2] King Abdulaziz Univ, Autonomous Syst Res Grp, Jeddah 21589, Saudi Arabia
[3] Tianjin Univ Technol, Sch Mech Engn, Tianjin 300191, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric actuator; Hysteresis; Bouc-Wen model; Control; HYSTERESIS COMPENSATION; OPTIMAL-DESIGN; IDENTIFICATION; MECHANISM; SYSTEMS;
D O I
10.1016/j.rcim.2013.08.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Piezoelectric actuator, which is widely used in micro-/nano-manipulation, often demonstrates nonlinear rate-dependent hysteresis characteristics. This paper proposes a Bouc-Wen model based inverse hysteresis compensator for rate-dependent hysteresis in PZT. The classical Bouc-Wen model for hysteresis is introduced firstly, then the identification of the parameters through the particle swarm optimization (PSO) method is conducted. A novel modified inverse Bouc-Wen model is proposed and verified through experiment. The proposed modified inverse Bouc-Wen model with a parametric selector constructs a real-time online rate-dependent compensator for handling PZT's hysteresis. During experiments of tracking multi-frequency composed of signals, the rate-dependent hysteresis of the PZT can be consistently compensated. The experimental results show that the proposed open loop hysteresis canceling method greatly improves the PZT's tracking control accuracy. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 21 条
[1]   Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications [J].
Ang, Wei Tech ;
Khosla, Pradeep K. ;
Riviere, Cameron N. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2007, 12 (02) :134-142
[2]   A modified PSO structure resulting in high exploration ability with convergence guaranteed [J].
Chen, Xin ;
Li, Yangmin .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (05) :1271-1289
[3]   Adaptive Control for Uncertain Continuous-Time Systems Using Implicit Inversion of Prandtl-Ishlinskii Hysteresis Representation [J].
Chen, Xinkai ;
Hisayama, Takeshi ;
Su, Chun-Yi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (10) :2357-2363
[4]   Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and Particle Swarm Optimization [J].
Doan Ngoc Chi Nam ;
Ahn, Kyoung Kwan .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 183 :105-114
[5]   Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems-A New Preisach Modeling Approach [J].
Kuhnen, Klaus ;
Krejci, Pavel .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) :537-550
[6]   Six-DOF micro-manipulator based on compliant parallel mechanism with integrated force sensor [J].
Liang, Qiaokang ;
Zhang, Dan ;
Chi, Zhongzhe ;
Song, Quanjun ;
Ge, Yunjian ;
Ge, Yu .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2011, 27 (01) :124-134
[7]  
Liaw H. C., 2008, IEEE T CONTR SYST T, V16, P134
[8]   Modeling of hysteresis in piezoelectric actuator based on adaptive filter [J].
Liu, Xiangdong ;
Wang, Ying ;
Geng, Jie ;
Chen, Zhen .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 189 :420-428
[9]   Compensation of scanner creep and hysteresis for AFM nanomanipulation [J].
Mokaberi, Babak ;
Requicha, Aristides A. G. .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2008, 5 (02) :197-206
[10]   A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications [J].
Qin, Yanding ;
Tian, Yanling ;
Zhang, Dawei ;
Shirinzadeh, Bijan ;
Fatikow, Sergej .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (03) :981-989