共 18 条
- [1] Alcala-Fdez J., Fernandez A., Luengo J., Derrac J., Garcia S., Sanchez L., Herrera F., KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, J. Mult.-Valued Log. Soft Comput, 17, pp. 255-287, (2011)
- [2] Bozga M., Maler O., On the Representation of Probabilities over Structured Domains, CAV 1999. LNCS, 1633, pp. 261-273, (1999)
- [3] Cobb B.R., Shenoy P.P., Inference in Hybrid Bayesian Networks with Mixtures of Truncated Exponentials, Int. J. Approximate Reasoning, 41, pp. 257-286, (2006)
- [4] Flores M.J., Gamez J.A., Nielsen J.D., The PDG-mixture Model for Clustering, 11th Int. Conf. on Data Warehousing & Knowledge Discovery, pp. 378-389, (2009)
- [5] Friedman N., Geiger D., Goldszmidt M., Bayesian Network Classifiers, Machine Learning, 29, pp. 131-163, (1997)
- [6] Gamez J.A., Nielsen J.D., Salmeron A., Modelling and Inference with Conditional Gaussian Probabilistic Decision Graphs, Int. J. Approximate Reasoning, 53, pp. 929-945, (2012)
- [7] Horthorn T., Hornik K., van de Wiel M.A., Zeileis A., Implementing a Class of Permutation Tests: The coin Package, J. Stat. Soft, 28, pp. 1-23, (2008)
- [8] Jaeger M., Probabilistic Decision Graphs-Combining Verification and AI Techniques for Probabilistic Inference, Int. J. Uncertainty Fuzziness Knowledge Based Syst, 12, pp. 19-42, (2004)
- [9] Langseth H., Nielsen T.D., Rumi R., Salmeron A., Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials, Int. J. Approximate Reasoning, 51, pp. 485-498, (2010)
- [10] Langseth H., Nielsen T.D., Rumi R., Salmeron A., Mixtures of Truncated Basis Functions, Int. J. Approximate Reasoning, 53, pp. 212-227, (2012)