Supervised classification using hybrid probabilistic decision graphs

被引:0
作者
Fernández, Antonio [1 ]
Rumí, Rafael [1 ]
del Sagrado, José [2 ]
Salmerón, Antonio [1 ]
机构
[1] Department of Mathematics, University of Almería, Ctra. Sacramento s/n, Almería
[2] Department of Computer Science, University of Almería, Ctra. Sacramento s/n, Almería
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8754卷
关键词
Mixtures of polynomials; Mixtures of truncated basis functions; Mixtures of truncated exponentials; Probabilistic decision graphs; Supervised classification;
D O I
10.1007/978-3-319-11433-0_14
中图分类号
学科分类号
摘要
In this paper we analyse the use of probabilistic decision graphs in supervised classification problems. We enhance existing models with the ability of operating in hybrid domains, where discrete and continuous variables coexist. Our proposal is based in the use of mixtures of truncated basis functions. We first introduce a new type of probabilistic graphical model, namely probabilistic decision graphs with mixture of truncated basis functions distribution, and then present an initial experimental evaluation where our proposal is compared with state-of-the-art Bayesian classifiers, showing a promising behaviour. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:206 / 221
页数:15
相关论文
共 18 条
  • [1] Alcala-Fdez J., Fernandez A., Luengo J., Derrac J., Garcia S., Sanchez L., Herrera F., KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, J. Mult.-Valued Log. Soft Comput, 17, pp. 255-287, (2011)
  • [2] Bozga M., Maler O., On the Representation of Probabilities over Structured Domains, CAV 1999. LNCS, 1633, pp. 261-273, (1999)
  • [3] Cobb B.R., Shenoy P.P., Inference in Hybrid Bayesian Networks with Mixtures of Truncated Exponentials, Int. J. Approximate Reasoning, 41, pp. 257-286, (2006)
  • [4] Flores M.J., Gamez J.A., Nielsen J.D., The PDG-mixture Model for Clustering, 11th Int. Conf. on Data Warehousing & Knowledge Discovery, pp. 378-389, (2009)
  • [5] Friedman N., Geiger D., Goldszmidt M., Bayesian Network Classifiers, Machine Learning, 29, pp. 131-163, (1997)
  • [6] Gamez J.A., Nielsen J.D., Salmeron A., Modelling and Inference with Conditional Gaussian Probabilistic Decision Graphs, Int. J. Approximate Reasoning, 53, pp. 929-945, (2012)
  • [7] Horthorn T., Hornik K., van de Wiel M.A., Zeileis A., Implementing a Class of Permutation Tests: The coin Package, J. Stat. Soft, 28, pp. 1-23, (2008)
  • [8] Jaeger M., Probabilistic Decision Graphs-Combining Verification and AI Techniques for Probabilistic Inference, Int. J. Uncertainty Fuzziness Knowledge Based Syst, 12, pp. 19-42, (2004)
  • [9] Langseth H., Nielsen T.D., Rumi R., Salmeron A., Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials, Int. J. Approximate Reasoning, 51, pp. 485-498, (2010)
  • [10] Langseth H., Nielsen T.D., Rumi R., Salmeron A., Mixtures of Truncated Basis Functions, Int. J. Approximate Reasoning, 53, pp. 212-227, (2012)